dbnt.co.kr2019/eng/RnD_deep.html

146 lines
10 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<?php include('../inc/pageheader_eng.php'); ?>
<link rel="stylesheet" href="../css/rnd.css">
<script src="../js/picLoad.js"></script>
<script src="../js/rnd.js?v=190507"></script>
<?php include('../inc/menubar_eng.php'); ?>
<section>
<h1 class="hidden">Start of Content</h1>
<article class="subBanner">
<h2 class="hidden">서브배너</h2>
<div class="inner">
<div class="subBannerInfo">
<ul>
<li>REFERENCE</li>
<li>Provides diverse solutions with Innovative technology for customer satisfaction</li>
</ul>
</div><!--end of subBannerInfo-->
</div><!--end of inner-->
</article><!--end of subBanner-->
<div class="siteIndex">
<div class="inner">
REFERENCE 》 Deep Learning-based accident image detection system
</div>
</div><!--end of siteIndex-->
<article class="rndContainer">
<h2 class="hidden">REFERENCE</h2>
<p><a href="./RnD_lunar.html">></a></p>
<div class="rndWrapper">
<div class="deepLearning">
<h2 class="hidden">딥러닝 기반 사고영상 감지 시스템</h2>
<ul class="clearfix">
<li class="bigPic1">
<iframe width="100%" height="100%" src="https://www.youtube.com/embed/8WVW2Di2Vu4" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
</li>
<li>
<dl>
<dt>Deep Learning-based accident image detection system</dt>
<dd>
Deep-learning based accident image detection system detects moving & target objects within
CCTV surveillance range and automatically recognize and alert emergency situation such as
accidents, reverse driving and fire specified in the management guideline. Compared to computer
vision-based video analysis techniques, this AI based system is less influenced by weather or place and detects accidents with higher accuracy.
</dd>
<dd>
<ul class="clearfix">
<li><img src="../images/video_img_01.png" alt="첫 비디오"></li>
<li><img src="../images/video_img_02.png" alt="두번째 비디오"></li>
<li><img src="../images/video_img_04.png" alt="세번째 비디오"></li>
<!--<li><video src="./avi/시퀀스_01_33.mp4" type="video/mp4" controls></li>-->
</ul>
</dd>
</dl>
</li>
</ul>
<div class="rndInfo">
<div class="innerScroll">
<ul class="techIntroduce">
<li class="techIntroduceTitle">1) Technology Introduction : Deep Learning-based accident image detection system</li>
<li>
Object Detection is a research field that analyzes video information by computer instead of a
person. Object detection technology is used variously in our daily life including pedestrian
detection, vehicle and road sign recognition by analyzing CCTV video. Especially, in the field of
traffic flow monitoring, the nationwide road network using CCTV is constantly monitored. In some
major section, an accident recognition system is in operation to automatically detect and inform
unexpected situations such as traffic jams, collision and falling objects and so forth. Typical
accident detection systems are equipped with algorithms based on traditional vision technology,
but it is highly sensitive to changes in surrounding environment such as luminance and weather,
resulting in pre-detection and detection errors. To solve this problem, DBNtech developed an
accident detection system that can detect objects in video like humans in various environments
using Deep Learning-based object detection technology. In collaboration with KICT(KOREA
INSTITUTE of CIVIL ENGINEERING and BUILDING TECHNOLOGY), we have completed an accident
detection system optimized for various environments and have set demonstrate-installed and delivered the system on since 2019.
</li>
</ul><!--end of techIntroduce-->
<ul class="techIntroduce">
<li class="techIntroduceTitle">) Related images</li>
<li class="techIntroduceImg">
<span><img src="../images/reference/deep/one.PNG" alt="레티나넷"></span>
<span><img src="../images/reference/deep/two.PNG" alt="SSD and YOLO"></span>
</li>
</ul><!--end of techIntroduce-->
<ul class="techIntroduce">
<li class="techIntroduceTitle">3) Application of Deep Learning-based Object detection</li>
<li class="techIntroduceHandle clearfix">
<dl>
<dt>A. Detection of unusual event (accident) through CCTV image analysis</dt>
<dd><img src="../images/reference/deep/1.PNG" alt=""></dd>
<dd>
1. Detection of stop(or collision) and reverse driving<br />
2. Pedestrian detection<br />
3. Fire and smoke detection<br />
</dd>
</dl>
<dl>
<dt>B. Character detection in images</dt>
<dd><img src="../images/reference/deep/2.PNG" alt=""></dd>
<dd>
1. Card number recognition<br />
2. Vehicles license plate recognition<br />
</dd>
</dl>
<dl>
<dt>C. Object recognition in space</dt>
<dd><img src="../images/reference/deep/3.PNG" alt=""></dd>
<dd>
1. Product recognition for unattended store payment system<br />
2. Automatic inventory check-up in refrigerator<br />
</dd>
</dl>
<dl>
<dt>D. Behavioral pattern analysis</dt>
<dd><img src="../images/reference/deep/4.PNG" alt=""></dd>
<dd>
1. Human motion tracking<br />
2. Calculation of humans action radius<br />
</dd>
</dl>
</li>
</ul><!--end of techIntroduce-->
</div><!--end of innerScroll-->
</div><!--end of rndInfo-->
</div><!--end of deepLearning-->
</div><!--end of rndWrapper-->
</article><!--end of rndContainer-->
<div class="fixMenu">
<p class="btn_fix"></p>
<ul>
<li><a href="#" alt="딥러닝 기반 사고영상 감지 시스템">Deep Learning-based accident image detection system</a></li>
<li><a href="#" alt="월면 크레이터 자동 인식 시스템">Automatic detection system of craters on the Lunar surface</a></li>
<li><a href="#" alt="시추정보 기반의 액상화 모델링 및 3차원 분석 모듈">liquefaction modeling and 3D analysis module based on Drilling information </a></li>
<li><a href="#" alt="도로표지관리/안내시스템">Road sign management/guide system</a></li>
</ul>
</div><!--end of fixMenu-->
</section><!--end of section, mainPage-->
<?php include('../inc/footer_eng.php'); ?>
</body>
</html>