From SW's laptop
parent
a748d20de2
commit
261f1d8e95
|
|
@ -38,16 +38,8 @@ for input_file in input_files:
|
||||||
for i in range(20, 100, 10):
|
for i in range(20, 100, 10):
|
||||||
|
|
||||||
# 침하 예측을 수행하고 반환값 저장
|
# 침하 예측을 수행하고 반환값 저장
|
||||||
return_values = settle_prediction_steps_main.\
|
return_values = settle_prediction_steps_main. \
|
||||||
run_settle_prediction(input_file=input_file, output_dir=output_dir,
|
run_settle_prediction(,
|
||||||
final_step_predict_percent=i,
|
|
||||||
additional_predict_percent=100,
|
|
||||||
plot_show=False,
|
|
||||||
print_values=False,
|
|
||||||
run_original_hyperbolic=True,
|
|
||||||
run_nonlinear_hyperbolic=True,
|
|
||||||
run_step_prediction=True,
|
|
||||||
settle_unit=settle_unit)
|
|
||||||
|
|
||||||
# 데이터프레임에 일단 및 다단 성토를 포함한 예측의 에러를 저장
|
# 데이터프레임에 일단 및 다단 성토를 포함한 예측의 에러를 저장
|
||||||
df_overall.loc[len(df_overall.index)] = [input_file, i, return_values[0], return_values[1],
|
df_overall.loc[len(df_overall.index)] = [input_file, i, return_values[0], return_values[1],
|
||||||
|
|
|
||||||
|
|
@ -25,7 +25,8 @@ nod: number of date
|
||||||
def settlement_prediction(point_name):
|
def settlement_prediction(point_name):
|
||||||
|
|
||||||
# connect the database
|
# connect the database
|
||||||
connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432")
|
#connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432") # local
|
||||||
|
connection = pg2.connect("host=192.168.0.13 dbname=sgis user=sgis password=sgis port=5432") # ICTWay internal
|
||||||
|
|
||||||
# set cursor
|
# set cursor
|
||||||
cursor = connection.cursor()
|
cursor = connection.cursor()
|
||||||
|
|
@ -43,9 +44,9 @@ def settlement_prediction(point_name):
|
||||||
|
|
||||||
# fill lists
|
# fill lists
|
||||||
for row in monitoring_record:
|
for row in monitoring_record:
|
||||||
settlement.append(float(row[6]))
|
settlement.append(float(row[5]))
|
||||||
surcharge.append(float(row[8]))
|
surcharge.append(float(row[7]))
|
||||||
time.append(float(row[12]))
|
time.append(float(row[1]))
|
||||||
|
|
||||||
# convert lists to np arrays
|
# convert lists to np arrays
|
||||||
settlement = np.array(settlement)
|
settlement = np.array(settlement)
|
||||||
|
|
@ -53,19 +54,14 @@ def settlement_prediction(point_name):
|
||||||
time = np.array(time)
|
time = np.array(time)
|
||||||
|
|
||||||
# run the settlement prediction and get results
|
# run the settlement prediction and get results
|
||||||
results = settle_prediction_steps_main.run_settle_prediction(point_name=point_name,
|
results = settle_prediction_steps_main.run_settle_prediction(point_name=point_name, np_time=time,
|
||||||
np_time=time,
|
np_surcharge=surcharge, np_settlement=settlement,
|
||||||
np_surcharge=surcharge,
|
|
||||||
np_settlement=settlement,
|
|
||||||
final_step_predict_percent=90,
|
final_step_predict_percent=90,
|
||||||
additional_predict_percent=300,
|
additional_predict_percent=300, plot_show=False,
|
||||||
plot_show=False,
|
print_values=False, run_original_hyperbolic=True,
|
||||||
print_values=False,
|
|
||||||
run_original_hyperbolic=True,
|
|
||||||
run_nonlinear_hyperbolic=True,
|
run_nonlinear_hyperbolic=True,
|
||||||
run_weighted_nonlinear_hyperbolic=True,
|
run_weighted_nonlinear_hyperbolic=True,
|
||||||
run_asaoka=True,
|
run_asaoka=True, run_step_prediction=True,
|
||||||
run_step_prediction=True,
|
|
||||||
asaoka_interval=3)
|
asaoka_interval=3)
|
||||||
|
|
||||||
# if there are prediction data for the given data point, delete it first
|
# if there are prediction data for the given data point, delete it first
|
||||||
|
|
@ -73,6 +69,14 @@ def settlement_prediction(point_name):
|
||||||
cursor.execute(postgres_delete_query)
|
cursor.execute(postgres_delete_query)
|
||||||
connection.commit()
|
connection.commit()
|
||||||
|
|
||||||
|
# prediction method code
|
||||||
|
# 0: original hyperbolic method
|
||||||
|
# 1: nonlinear hyperbolic method
|
||||||
|
# 2: weighted nonlinear hyperbolic method
|
||||||
|
# 3: Asaoka method
|
||||||
|
# 4: Step loading
|
||||||
|
# 5: temp
|
||||||
|
|
||||||
# insert predicted settlement into database
|
# insert predicted settlement into database
|
||||||
for i in range(5):
|
for i in range(5):
|
||||||
|
|
||||||
|
|
@ -85,7 +89,8 @@ def settlement_prediction(point_name):
|
||||||
|
|
||||||
# construct insert query
|
# construct insert query
|
||||||
postgres_insert_query \
|
postgres_insert_query \
|
||||||
= """INSERT INTO apptb_pred02 (cons_code, prediction_progress_days, predicted_settlement, prediction_method) """\
|
= """INSERT INTO apptb_pred02 """ \
|
||||||
|
+ """(cons_code, prediction_progress_days, predicted_settlement, prediction_method) """ \
|
||||||
+ """VALUES (%s, %s, %s, %s)"""
|
+ """VALUES (%s, %s, %s, %s)"""
|
||||||
|
|
||||||
# set data to insert
|
# set data to insert
|
||||||
|
|
@ -128,8 +133,18 @@ def read_database_and_plot(point_name):
|
||||||
surcharge_monitored = np.array(surcharge_monitored)
|
surcharge_monitored = np.array(surcharge_monitored)
|
||||||
time_monitored = np.array(time_monitored)
|
time_monitored = np.array(time_monitored)
|
||||||
|
|
||||||
|
# prediction method code
|
||||||
|
# 0: original hyperbolic method
|
||||||
|
# 1: nonlinear hyperbolic method
|
||||||
|
# 2: weighted nonlinear hyperbolic method
|
||||||
|
# 3: Asaoka method
|
||||||
|
# 4: Step loading
|
||||||
|
# 5: temp
|
||||||
|
|
||||||
|
# temporarily set the prediction method as 0
|
||||||
prediction_method = 0
|
prediction_method = 0
|
||||||
# select monitoring data for the monitoring point
|
|
||||||
|
# select predicted data for the monitoring point
|
||||||
postgres_select_query = """SELECT prediction_progress_days, predicted_settlement """ \
|
postgres_select_query = """SELECT prediction_progress_days, predicted_settlement """ \
|
||||||
+ """FROM apptb_pred02 WHERE cons_code= '""" + point_name \
|
+ """FROM apptb_pred02 WHERE cons_code= '""" + point_name \
|
||||||
+ """' and prediction_method = """ + str(prediction_method) \
|
+ """' and prediction_method = """ + str(prediction_method) \
|
||||||
|
|
@ -169,12 +184,10 @@ def read_database_and_plot(point_name):
|
||||||
linestyle='--', color='red', label='Original Hyperbolic')
|
linestyle='--', color='red', label='Original Hyperbolic')
|
||||||
|
|
||||||
|
|
||||||
|
# script to call: python3 controller.py [business_code] [cons_code]
|
||||||
# python3 controller.py 1_SP-5
|
# for example:
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
args = sys.argv[1:]
|
args = sys.argv[1:]
|
||||||
point_name = args[0]
|
point_name = args[0]
|
||||||
#settlement_prediction(point_name=point_name)
|
settlement_prediction(point_name=point_name)
|
||||||
read_database_and_plot(point_name=point_name)
|
# read_database_and_plot(point_name=point_name) #DB 입력 결과 확인 시에 활성화 / 평소에는 비활성화
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -79,19 +79,12 @@ def run_settle_prediction_from_file(input_file, output_dir,
|
||||||
settle = data['Settlement'].to_numpy()
|
settle = data['Settlement'].to_numpy()
|
||||||
surcharge = data['Surcharge'].to_numpy()
|
surcharge = data['Surcharge'].to_numpy()
|
||||||
|
|
||||||
run_settle_prediction(point_name=input_file,
|
run_settle_prediction(point_name=input_file, np_time=time, np_surcharge=surcharge, np_settlement=settle,
|
||||||
np_time=time,
|
|
||||||
np_surcharge=surcharge,
|
|
||||||
np_settlement=settle,
|
|
||||||
final_step_predict_percent=final_step_predict_percent,
|
final_step_predict_percent=final_step_predict_percent,
|
||||||
additional_predict_percent=additional_predict_percent,
|
additional_predict_percent=additional_predict_percent, plot_show=plot_show,
|
||||||
plot_show=plot_show,
|
print_values=print_values, run_original_hyperbolic=run_original_hyperbolic,
|
||||||
print_values=print_values,
|
run_nonlinear_hyperbolic=run_nonlinear_hyperbolic, run_weighted_nonlinear_hyperbolic='False',
|
||||||
run_original_hyperbolic=run_original_hyperbolic,
|
run_asaoka=run_asaoka, run_step_prediction=run_step_prediction,
|
||||||
run_nonlinear_hyperbolic=run_nonlinear_hyperbolic,
|
|
||||||
run_weighted_nonlinear_hyperbolic='False',
|
|
||||||
run_asaoka=run_asaoka,
|
|
||||||
run_step_prediction=run_step_prediction,
|
|
||||||
asaoka_interval=asaoka_interval)
|
asaoka_interval=asaoka_interval)
|
||||||
|
|
||||||
def run_settle_prediction(point_name,
|
def run_settle_prediction(point_name,
|
||||||
|
|
@ -101,10 +94,10 @@ def run_settle_prediction(point_name,
|
||||||
print_values,
|
print_values,
|
||||||
run_original_hyperbolic='True',
|
run_original_hyperbolic='True',
|
||||||
run_nonlinear_hyperbolic='True',
|
run_nonlinear_hyperbolic='True',
|
||||||
run_weighted_nonlinear_hyperbolic='False',
|
run_weighted_nonlinear_hyperbolic='True',
|
||||||
run_asaoka = 'True',
|
run_asaoka = 'True',
|
||||||
run_step_prediction='True',
|
run_step_prediction='True',
|
||||||
asaoka_interval = 3):
|
asaoka_interval = 5):
|
||||||
|
|
||||||
# ====================
|
# ====================
|
||||||
# 파일 읽기, 데이터 설정
|
# 파일 읽기, 데이터 설정
|
||||||
|
|
@ -757,6 +750,11 @@ def run_settle_prediction(point_name,
|
||||||
final_error_hyper_original, final_error_hyper_nonlinear, final_error_hyper_weight_nonlinear,
|
final_error_hyper_original, final_error_hyper_nonlinear, final_error_hyper_weight_nonlinear,
|
||||||
final_error_asaoka, final_error_step]
|
final_error_asaoka, final_error_step]
|
||||||
|
|
||||||
|
#def run_postprocessing_error(point_name, np_time, np_surcharge, np_settlement):
|
||||||
|
# a = a + 1
|
||||||
|
|
||||||
|
#def run_postprocessing_graph(point_name, np_time, np_surcharge, np_)
|
||||||
|
#
|
||||||
'''
|
'''
|
||||||
run_settle_prediction(input_file='data/2-5_No.39.csv',
|
run_settle_prediction(input_file='data/2-5_No.39.csv',
|
||||||
output_dir='output',
|
output_dir='output',
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue