thkim 2025-12-23 15:45:56 +09:00
parent 27453ed2a9
commit aabfab1261
11 changed files with 1695 additions and 494 deletions

View File

@ -0,0 +1,215 @@
"""
Title: Controller
Developer:
Sang Inn Woo, Ph.D. @ Incheon National University
Starting Date: 2022-11-10
"""
import psycopg2 as pg2
import sys
import numpy as np
import settle_prediction_steps_main
import matplotlib.pyplot as plt
import pdb;
'''
apptb_surset01
cons_code: names of monitoring points
apptb_surset02
cons_code: names of monitoring points
amount_cum_sub: accumulated settlement
fill_height: height of surcharge fill
nod: number of date
'''
def settlement_prediction(business_code, cons_code):
# connect the database
#connection = pg2.connect("host=localhost dbname=sgis user=postgres password=postgres port=5434") # local
connection = pg2.connect("host=192.168.10.172 dbname=sgis_new user=sgis password=sgis port=5432") # ICTWay internal
# set cursor
cursor = connection.cursor()
# select monitoring data for the monitoring point
postgres_select_query = """SELECT (amount_cum_sub * -1), fill_height, nod FROM apptb_surset02 WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code + """' ORDER BY nod ASC"""
cursor.execute(postgres_select_query)
monitoring_record = cursor.fetchall()
# initialize time, surcharge, and settlement lists
time = []
surcharge = []
settlement = []
# fill lists
for row in monitoring_record:
settlement.append(float(row[0]))
surcharge.append(float(row[1]))
time.append(float(row[2]))
# convert lists to np arrays
settlement = np.array(settlement)
surcharge = np.array(surcharge)
time = np.array(time)
# run the settlement prediction and get results
results = settle_prediction_steps_main.run_settle_prediction(point_name=cons_code, np_time=time,
np_surcharge=surcharge, np_settlement=settlement,
final_step_predict_percent=90,
additional_predict_percent=300, plot_show=False,
print_values=False, run_original_hyperbolic=True,
run_nonlinear_hyperbolic=True,
run_weighted_nonlinear_hyperbolic=True,
run_asaoka=True, run_step_prediction=True,
asaoka_interval=3)
# prediction method code
# 1: original hyperbolic method (쌍곡선법)
# 2: nonlinear hyperbolic method (비선형 쌍곡선법)
# 3: weighted nonlinear hyperbolic method (가중 비선형 쌍곡선법)
# 4: Asaoka method (아사오카법)
# 5: Step loading (단계성토 고려법)
'''
time_hyper, sp_hyper_original,
time_hyper, sp_hyper_nonlinear,
time_hyper, sp_hyper_weight_nonlinear,
time_asaoka, sp_asaoka,
time[step_start_index[0]:], -sp_step[step_start_index[0]:],
'''
for i in range(5):
# if there are prediction data for the given data point, delete it first
postgres_delete_query = """DELETE FROM apptb_pred02_no""" + str(i + 1) \
+ """ WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code + """'"""
cursor.execute(postgres_delete_query)
connection.commit()
# get time and settlement arrays
time = results[2 * i]
predicted_settlement = results[2 * i + 1]
# for each prediction time
for j in range(len(time)):
# construct insert query
postgres_insert_query \
= """INSERT INTO apptb_pred02_no""" + str(i + 1) + """ """ \
+ """(business_code, cons_code, prediction_progress_days, predicted_settlement, prediction_method) """ \
+ """VALUES (%s, %s, %s, %s, %s)"""
# set data to insert
record_to_insert = (business_code, cons_code, time[j], predicted_settlement[j], i + 1)
# execute the insert query
cursor.execute(postgres_insert_query, record_to_insert)
# commit changes
connection.commit()
def read_database_and_plot(business_code, cons_code):
# connect the database
# connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432")
connection = pg2.connect("host=192.168.0.72 dbname=sgis user=sgis password=sgis port=5432") # ICTWay internal
# set cursor
cursor = connection.cursor()
# select monitoring data for the monitoring point
postgres_select_query = """SELECT * FROM apptb_surset02 WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code + """' ORDER BY nod ASC"""
cursor.execute(postgres_select_query)
monitoring_record = cursor.fetchall()
# initialize time, surcharge, and settlement lists
time_monitored = []
surcharge_monitored = []
settlement_monitored = []
# fill lists
for row in monitoring_record:
time_monitored.append(float(row[2]))
settlement_monitored.append(float(row[6]))
surcharge_monitored.append(float(row[8]))
# convert lists to np arrays
settlement_monitored = np.array(settlement_monitored)
surcharge_monitored = np.array(surcharge_monitored)
time_monitored = np.array(time_monitored)
# prediction method code
# 0: original hyperbolic method
# 1: nonlinear hyperbolic method
# 2: weighted nonlinear hyperbolic method
# 3: Asaoka method
# 4: Step loading
# 5: temp
# temporarily set the prediction method as 0
postgres_select_query = """SELECT prediction_progress_days, predicted_settlement """ \
+ """FROM apptb_pred02_no""" + str(5) \
+ """ WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code \
+ """' ORDER BY prediction_progress_days ASC"""
# select predicted data for the monitoring point
cursor.execute(postgres_select_query)
prediction_record = cursor.fetchall()
# initialize time, surcharge, and settlement lists
time_predicted = []
settlement_predicted = []
# fill lists
for row in prediction_record:
time_predicted.append(float(row[0]))
settlement_predicted.append(float(row[1]))
# convert lists to np arrays
settlement_predicted = np.array(settlement_predicted)
time_predicted = np.array(time_predicted)
# 그래프 크기, 서브 그래프 개수 및 비율 설정
fig, axes = plt.subplots(2, 1, figsize=(8, 6), gridspec_kw={'height_ratios': [1, 3]})
# 성토고 그래프 표시
axes[0].plot(time_monitored, surcharge_monitored, color='black', label='surcharge height')
# 성토고 그래프 설정
axes[0].set_ylabel("Surcharge height (m)", fontsize=10)
axes[0].set_xlim(left=0)
axes[0].set_xlim(right=np.max(time_predicted))
axes[0].grid(color="gray", alpha=.5, linestyle='--')
axes[0].tick_params(direction='in')
# 계측 및 예측 침하량 표시
axes[1].scatter(time_monitored, -settlement_monitored, s=30,
facecolors='white', edgecolors='black', label='measured data')
axes[1].plot(time_predicted, -settlement_predicted,
linestyle='--', color='red', label='Original Hyperbolic')
axes[0].set_ylabel("Settlement (cm)", fontsize=10)
axes[1].set_xlim(left=0)
axes[1].set_xlim(right=np.max(time_predicted))
# script to call: python3 controller.py [business_code] [cons_code]
# for example: python3 controller.py 221222SA0003 CONS001
if __name__ == '__main__':
args = sys.argv[1:]
business_code = args[0]
cons_code = args[1]
settlement_prediction(business_code=business_code, cons_code=cons_code)
print("The settlement prediction is over.")
#read_database_and_plot(business_code=business_code, cons_code=cons_code)
#print("Visualization is over.")

View File

@ -0,0 +1,777 @@
"""
Title: Soft ground settlement prediction
Developer:
Sang Inn Woo, Ph.D. @ Incheon National University
Kwak Taeyoung, Ph.D. @ KICT
Starting Date: 2022-08-11
Abstract:
This main objective of this code is to predict
time vs. (consolidation) settlement curves of soft clay ground.
"""
# =================
# Import 섹션
# =================
import os.path
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import least_squares
from scipy.interpolate import interp1d
# =================
# Function 섹션
# =================
# 주어진 계수를 이용하여 쌍곡선 시간-침하 곡선 반환
def generate_data_hyper(px, pt):
return pt / (px[0] * pt + px[1])
# 주어진 계수를 이용하여 아사오카 시간-침하 곡선 반환
def generate_data_asaoka(px, pt, dt):
return (px[1] / (1 - px[0])) * (1 - (px[0] ** (pt / dt)))
# 회귀식과 측정치와의 잔차 반환 (비선형 쌍곡선)
def fun_hyper_nonlinear(px, pt, py):
return pt / (px[0] * pt + px[1]) - py
# 회귀식과 측정치와의 잔차 반환 (가중 비선형 쌍곡선)
def fun_hyper_weight_nonlinear(px, pt, py, pw):
return (pt / (px[0] * pt + px[1]) - py) * pw
# 회귀식과 측정치와의 잔차 반환 (기존 쌍곡선)
def fun_hyper_original(px, pt, py):
return px[0] * pt + px[1] - pt / py
# 회귀식과 측정치와의 잔차 반환 (아사오카)
def fun_asaoka(px, ps_b, ps_a):
return px[0] * ps_b + px[1] - ps_a
# RMSE 산정
def fun_rmse(py1, py2):
mse = np.square(np.subtract(py1, py2)).mean()
return np.sqrt(mse)
def run_settle_prediction_from_file(input_file, output_dir,
final_step_predict_percent, additional_predict_percent,
plot_show,
print_values,
run_original_hyperbolic='True',
run_nonlinear_hyperbolic='True',
run_weighted_nonlinear_hyperbolic='True',
run_asaoka='True',
run_step_prediction='True',
asaoka_interval=3):
# 현재 파일 이름 출력
print("Working on " + input_file)
# CSV 파일 읽기
data = pd.read_csv(input_file, encoding='euc-kr')
# 시간, 침하량, 성토고 배열 생성
time = data['Time'].to_numpy()
settle = data['Settlement'].to_numpy()
surcharge = data['Surcharge'].to_numpy()
run_settle_prediction(point_name=input_file, np_time=time, np_surcharge=surcharge, np_settlement=settle,
final_step_predict_percent=final_step_predict_percent,
additional_predict_percent=additional_predict_percent, plot_show=plot_show,
print_values=print_values,
run_original_hyperbolic=run_original_hyperbolic,
run_nonlinear_hyperbolic=run_nonlinear_hyperbolic,
run_weighted_nonlinear_hyperbolic=run_weighted_nonlinear_hyperbolic,
run_asaoka=run_asaoka,
run_step_prediction=run_step_prediction,
asaoka_interval=asaoka_interval)
def run_settle_prediction(point_name,
np_time, np_surcharge, np_settlement,
final_step_predict_percent, additional_predict_percent,
plot_show,
print_values,
run_original_hyperbolic='True',
run_nonlinear_hyperbolic='True',
run_weighted_nonlinear_hyperbolic='True',
run_asaoka = 'True',
run_step_prediction='True',
asaoka_interval = 5):
# ====================
# 파일 읽기, 데이터 설정
# ====================
# 시간, 침하량, 성토고 배열 생성
time = np_time
settle = np_settlement
surcharge = np_surcharge
# 마지막 계측 데이터 index + 1 파악
final_index = time.size
# =================
# 성토 단계 구분
# =================
# 성토 단계 시작 index 리스트 초기화
step_start_index = [0]
# 성토 단계 끝 index 리스트 초기화
step_end_index = []
# 현재 성토고 설정
current_surcharge = surcharge[0]
# 단계 시작 시점 초기화
step_start_date = 0
# 모든 시간-성토고 데이터에서 순차적으로 확인
for index in range(len(surcharge)):
# 만일 성토고의 변화가 있을 경우,
if surcharge[index] > current_surcharge*1.05 or surcharge[index] < current_surcharge*0.95:
step_end_index.append(index)
step_start_index.append(index)
current_surcharge = surcharge[index]
# 마지막 성토 단계 끝 index 추가
step_end_index.append(len(surcharge) - 1)
# =================
# 성토 단계 조정
# =================
# 성토고 유지 기간이 매우 짧을 경우, 해석 단계에서 제외
# 조정 성토 시작 및 끝 인덱스 리스트 초기화
step_start_index_adjust = []
step_end_index_adjust = []
# 각 성토 단계 별로 분석
for i in range(0, len(step_start_index)):
# 현 단계 성토 시작일 / 끝일 파악
step_start_date = time[step_start_index[i]]
step_end_date = time[step_end_index[i]]
# 현 성토고 유지 일수 및 데이터 개수 파악
step_span = step_end_date - step_start_date
step_data_num = step_end_index[i] - step_start_index[i] + 1
# 성토고 유지일 및 데이터 개수 기준 적용
if step_span > 30 and step_data_num > 5:
step_start_index_adjust.append((step_start_index[i]))
step_end_index_adjust.append((step_end_index[i]))
# 성토 시작 및 끝 인덱스 리스트 업데이트
step_start_index = step_start_index_adjust
step_end_index = step_end_index_adjust
# 침하 예측을 수행할 단계 설정 (현재 끝에서 2단계 이용)
step_start_index = step_start_index[-2:]
step_end_index = step_end_index[-2:]
# 성토 단계 횟수 파악 및 저장
num_steps = len(step_start_index)
# ===========================
# 최종 단계 데이터 사용 범위 조정
# ===========================
# 데이터 사용 퍼센트에 해당하는 기간 계산
final_step_end_date = time[-1]
final_step_start_date = time[step_start_index[num_steps - 1]]
final_step_period = final_step_end_date - final_step_start_date
final_step_predict_end_date = final_step_start_date + final_step_period * final_step_predict_percent / 100
# 데이터 사용 끝 시점 인덱스 초기화
final_step_predict_end_index = -1
# 데이터 사용 끝 시점 인덱스 검색
count = 0
for day in time:
count = count + 1
if day > final_step_predict_end_date:
final_step_predict_end_index = count - 1
break
# 마지막 성토 단계, 마지막 계측 시점 인덱스 업데이트
final_step_monitor_end_index = step_end_index[num_steps - 1]
step_end_index[num_steps - 1] = final_step_predict_end_index
# =================
# 추가 예측 구간 반영
# =================
# 추가 예측 일 입력 (현재 전체 계측일 * 계수)
add_days = (additional_predict_percent / 100) * time[-1]
# 마지막 성토고 및 마지막 계측일 저장
final_surcharge = surcharge[final_index - 1]
final_time = time[final_index - 1]
# 추가 시간 및 성토고 배열 설정 (100개의 시점 설정)
time_add = np.linspace(final_time + 1, final_time + add_days, 100)
surcharge_add = np.ones(100) * final_surcharge
# 기존 시간 및 성토고 배열에 붙이기
time = np.append(time, time_add)
surcharge = np.append(surcharge, surcharge_add)
# 마지막 인덱스값 재조정
final_index = time.size
# ==========================================
# Settlement Prediction (Step + Hyperbolic)
# ==========================================
# 예측 침하량 초기화
sp_step = np.zeros(time.size)
# 각 단계별로 진행
for i in range(0, num_steps):
# 각 단계별 계측 시점과 계측 침하량 배열 생성
tm_this_step = time[step_start_index[i]:step_end_index[i]]
sm_this_step = settle[step_start_index[i]:step_end_index[i]]
# 이전 단계까지 예측 침하량 중 현재 단계에 해당하는 부분 추출
sp_this_step = sp_step[step_start_index[i]:step_end_index[i]]
# 현재 단계 시작 부터 끝까지 시간 데이터 추출
tm_to_end = time[step_start_index[i]:final_index]
# 기존 예측 침하량에 대한 보정
sm_this_step = sm_this_step - sp_this_step
# 초기 시점 및 침하량 산정
t0_this_step = tm_this_step[0]
s0_this_step = sm_this_step[0]
# 초기 시점에 대한 시간 조정
tm_this_step = tm_this_step - t0_this_step
tm_to_end = tm_to_end - t0_this_step
# 초기 침하량에 대한 침하량 조정
sm_this_step = sm_this_step - s0_this_step
# 침하 곡선 계수 초기화
x0 = np.ones(2)
# 회귀분석 시행
res_lsq_hyper_nonlinear \
= least_squares(fun_hyper_nonlinear, x0,
args=(tm_this_step, sm_this_step))
# 쌍곡선 계수 저장 및 출력
x_step = res_lsq_hyper_nonlinear.x
if print_values:
print(x_step)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_to_end_update = generate_data_hyper(x_step, tm_to_end)
# 예측 침하량 업데이트
sp_step[step_start_index[i]:final_index] = \
sp_step[step_start_index[i]:final_index] + sp_to_end_update + s0_this_step
'''
# ======================================
# Settlement Prediction (Step + Asaoka)
# ======================================
# TODO: Modify this
# 예측 침하량 초기화
sp_step_asaoka = np.zeros(time.size)
# 각 단계별로 진행
for i in range(0, num_steps):
# 각 단계별 계측 시점과 계측 침하량 배열 생성
tm_this_step = time[step_start_index[i]:step_end_index[i]]
sm_this_step = settle[step_start_index[i]:step_end_index[i]]
# 이전 단계 까지 예측 침하량 중 현재 단계에 해당 하는 부분 추출
sp_this_step = sp_step[step_start_index[i]:step_end_index[i]]
# 현재 단계 시작 부터 끝까지 시간 데이터 추출
tm_to_end = time[step_start_index[i]:final_index]
# 기존 예측 침하량에 대한 보정
sm_this_step = sm_this_step - sp_this_step
# 초기 시점 및 침하량 산정
t0_this_step = tm_this_step[0]
s0_this_step = sm_this_step[0]
# 초기 시점에 대한 시간 조정
tm_this_step = tm_this_step - t0_this_step
tm_to_end = tm_to_end - t0_this_step
# 초기 침하량에 대한 침하량 조정
sm_this_step = sm_this_step - s0_this_step
# 등간격 데이터 생성을 위한 Interpolation 함수 설정
inter_fn = interp1d(tm_this_step, sm_this_step, kind='cubic')
# 데이터 구축 간격 및 그에 해당하는 데이터 포인트 개수 설정
num_data = int(tm_this_step[-1] / asaoka_interval)
# 등간격 시간 및 침하량 데이터 설정
tm_this_step_inter = np.linspace(0, tm_this_step[-1], num=num_data, endpoint=True)
sm_this_step_inter = inter_fn(tm_this_step_inter)
# 이전 이후 등간격 침하량 배열 구축
sm_this_step_before = sm_this_step_inter[0:-2]
sm_this_step_after = sm_this_step_inter[1:-1]
# Least square 변수 초기화
x0 = np.ones(2)
# Least square 분석을 통한 침하 곡선 계수 결정
res_lsq_asaoka = least_squares(fun_asaoka, x0, args=(sm_this_step_before, sm_this_step_after))
# 기존 쌍곡선 법 계수 저장 및 출력
x_step_asaoka = res_lsq_asaoka.x
if print_values:
print(x_step_asaoka)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_to_end_update = generate_data_asaoka(x_step_asaoka, tm_to_end, asaoka_interval)
# 예측 침하량 업데이트
sp_step_asaoka[step_start_index[i]:final_index] = \
sp_step_asaoka[step_start_index[i]:final_index] + sp_to_end_update + s0_this_step
'''
# =========================================================
# Settlement prediction (nonliner, weighted nonlinear and original hyperbolic)
# =========================================================
# 성토 마지막 데이터 추출
tm_hyper = time[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
sm_hyper = settle[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
# 현재 단계 시작 부터 끝까지 시간 데이터 추출
time_hyper = time[step_start_index[num_steps - 1]:final_index]
# 초기 시점 및 침하량 산정
t0_hyper = tm_hyper[0]
s0_hyper = sm_hyper[0]
# 초기 시점에 대한 시간 조정
tm_hyper = tm_hyper - t0_hyper
time_hyper = time_hyper - t0_hyper
# 초기 침하량에 대한 침하량 조정
sm_hyper = sm_hyper - s0_hyper
# 회귀분석 시행 (비선형 쌍곡선)
x0 = np.ones(2)
res_lsq_hyper_nonlinear = least_squares(fun_hyper_nonlinear, x0,
args=(tm_hyper, sm_hyper))
# 비선형 쌍곡선 법 계수 저장 및 출력
x_hyper_nonlinear = res_lsq_hyper_nonlinear.x
if print_values:
print(x_hyper_nonlinear)
# 가중 비선형 쌍곡선 가중치 산정
weight = tm_hyper / np.sum(tm_hyper)
# 회귀분석 시행 (가중 비선형 쌍곡선)
x0 = np.ones(2)
res_lsq_hyper_weight_nonlinear = least_squares(fun_hyper_weight_nonlinear, x0,
args=(tm_hyper, sm_hyper, weight))
# 비선형 쌍곡선 법 계수 저장 및 출력
x_hyper_weight_nonlinear = res_lsq_hyper_weight_nonlinear.x
if print_values:
print(x_hyper_weight_nonlinear)
# 회귀분석 시행 (기존 쌍곡선법) - (0, 0)에 해당하는 초기 데이터를 제외하고 회귀분석 실시
x0 = np.ones(2)
res_lsq_hyper_original = least_squares(fun_hyper_original, x0,
args=(tm_hyper[1:], sm_hyper[1:]))
# 기존 쌍곡선 법 계수 저장 및 출력
x_hyper_original = res_lsq_hyper_original.x
if print_values:
print(x_hyper_original)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_hyper_nonlinear = generate_data_hyper(x_hyper_nonlinear, time_hyper)
sp_hyper_weight_nonlinear = generate_data_hyper(x_hyper_weight_nonlinear, time_hyper)
sp_hyper_original = generate_data_hyper(x_hyper_original, time_hyper)
# 예측 침하량 산정
sp_hyper_nonlinear = sp_hyper_nonlinear + s0_hyper
sp_hyper_weight_nonlinear = sp_hyper_weight_nonlinear + s0_hyper
sp_hyper_original = sp_hyper_original + s0_hyper
time_hyper = time_hyper + t0_hyper
# ===============================
# Settlement prediction (Asaoka)
# ===============================
# 성토 마지막 데이터 추출
tm_asaoka = time[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
sm_asaoka = settle[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
# 현재 단계 시작 부터 끝까지 시간 데이터 추출
time_asaoka = time[step_start_index[num_steps - 1]:final_index]
# 초기 시점 및 침하량 산정
t0_asaoka = tm_asaoka[0]
s0_asaoka = sm_asaoka[0]
# 초기 시점에 대한 시간 조정
tm_asaoka = tm_asaoka - t0_asaoka
time_asaoka = time_asaoka - t0_asaoka
# 초기 침하량에 대한 침하량 조정
sm_asaoka = sm_asaoka - s0_asaoka
# 등간격 데이터 생성을 위한 Interpolation 함수 설정
inter_fn = interp1d(tm_asaoka, sm_asaoka, kind='cubic')
# 데이터 구축 간격 및 그에 해당하는 데이터 포인트 개수 설정
num_data = int(tm_asaoka[-1] / asaoka_interval)
# 등간격 시간 및 침하량 데이터 설정
tm_asaoka_inter = np.linspace(0, tm_asaoka[-1], num=num_data, endpoint=True)
sm_asaoka_inter = inter_fn(tm_asaoka_inter)
# 이전 이후 등간격 침하량 배열 구축
sm_asaoka_before = sm_asaoka_inter[0:-2]
sm_asaoka_after = sm_asaoka_inter[1:-1]
# Least square 변수 초기화
x0 = np.ones(2)
# Least square 분석을 통한 침하 곡선 계수 결정
res_lsq_asaoka = least_squares(fun_asaoka, x0, args=(sm_asaoka_before, sm_asaoka_after))
# 기존 쌍곡선 법 계수 저장 및 출력
x_asaoka = res_lsq_asaoka.x
if print_values:
print(x_asaoka)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_asaoka = generate_data_asaoka(x_asaoka, time_asaoka, asaoka_interval)
# 예측 침하량 산정
sp_asaoka = sp_asaoka + s0_asaoka
time_asaoka = time_asaoka + t0_asaoka
# ==============================
# Post-Processing #1 : 에러 산정
# ==============================
# RMSE 계산 데이터 구간 설정 (계측)
sm_rmse = settle[final_step_predict_end_index:final_step_monitor_end_index]
# RMSE 계산 데이터 구간 설정 (단계)
sp_step_rmse = sp_step[final_step_predict_end_index:final_step_monitor_end_index]
# RMSE 계산 데이터 구간 설정 (쌍곡선)
sp_hyper_nonlinear_rmse = sp_hyper_nonlinear[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
sp_hyper_weight_nonlinear_rmse \
= sp_hyper_weight_nonlinear[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
sp_hyper_original_rmse = sp_hyper_original[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
# RMSE 계산 데이터 구간 설정 (아사오카)
sp_asaoka_rmse = sp_asaoka[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
# RMSE 산정 (단계, 비선형 쌍곡선, 기존 쌍곡선)
rmse_step = fun_rmse(sm_rmse, sp_step_rmse)
rmse_hyper_nonlinear = fun_rmse(sm_rmse, sp_hyper_nonlinear_rmse)
rmse_hyper_weight_nonlinear = fun_rmse(sm_rmse, sp_hyper_weight_nonlinear_rmse)
rmse_hyper_original = fun_rmse(sm_rmse, sp_hyper_original_rmse)
rmse_asaoka = fun_rmse(sm_rmse, sp_asaoka_rmse)
# RMSE 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선)
if print_values:
print("RMSE (Nonlinear Hyper + Step): %0.3f" % rmse_step)
print("RMSE (Nonlinear Hyperbolic): %0.3f" % rmse_hyper_nonlinear)
print("RMSE (Weighted Nonlinear Hyperbolic): %0.3f" % rmse_hyper_weight_nonlinear)
print("RMSE (Original Hyperbolic): %0.3f" % rmse_hyper_original)
print("RMSE (Asaoka): %0.3f" % rmse_asaoka)
# (최종 계측 침하량 - 예측 침하량) 계산
final_error_step = np.abs(settle[-1] - sp_step_rmse[-1])
final_error_hyper_nonlinear = np.abs(settle[-1] - sp_hyper_nonlinear_rmse[-1])
final_error_hyper_weight_nonlinear = np.abs(settle[-1] - sp_hyper_weight_nonlinear_rmse[-1])
final_error_hyper_original = np.abs(settle[-1] - sp_hyper_original_rmse[-1])
final_error_asaoka = np.abs(settle[-1] - sp_asaoka_rmse[-1])
# (최종 계측 침하량 - 예측 침하량) 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선)
if print_values:
print("Error in Final Settlement (Nonlinear Hyper + Step): %0.3f" % final_error_step)
print("Error in Final Settlement (Nonlinear Hyperbolic): %0.3f" % final_error_hyper_nonlinear)
print("Error in Final Settlement (Weighted Nonlinear Hyperbolic): %0.3f" % final_error_hyper_weight_nonlinear)
print("Error in Final Settlement (Original Hyperbolic): %0.3f" % final_error_hyper_original)
print("Error in Final Settlement (Asaoka): %0.3f" % final_error_asaoka)
# ==========================================
# Post-Processing #2 : 그래프 작성
# ==========================================
# 만약 그래프 도시가 필요할 경우,
if plot_show:
# 그래프 크기, 서브 그래프 개수 및 비율 설정
fig, axes = plt.subplots(2, 1, figsize=(12, 9), gridspec_kw={'height_ratios': [1, 3]})
# 성토고 그래프 표시
axes[0].plot(time, surcharge, color='black', label='surcharge height')
# 성토고 그래프 설정
axes[0].set_ylabel("Surcharge height (m)", fontsize=15)
axes[0].set_xlim(left=0)
axes[0].grid(color="gray", alpha=.5, linestyle='--')
axes[0].tick_params(direction='in')
# 계측 및 예측 침하량 표시
axes[1].scatter(time[0:settle.size], -settle, s=50,
facecolors='white', edgecolors='black', label='measured data')
axes[1].plot(time_hyper, -sp_hyper_original,
linestyle='--', color='red', label='Original Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_nonlinear,
linestyle='--', color='green', label='Nonlinear Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_weight_nonlinear,
linestyle='--', color='blue', label='Nonlinear Hyperbolic (Weighted)')
axes[1].plot(time_asaoka, -sp_asaoka,
linestyle='--', color='orange', label='Asaoka')
axes[1].plot(time[step_start_index[0]:], -sp_step[step_start_index[0]:],
linestyle='--', color='navy', label='Nonlinear + Step Loading')
# 침하량 그래프 설정
axes[1].set_xlabel("Time (day)", fontsize=15)
axes[1].set_ylabel("Settlement (cm)", fontsize=15)
axes[1].set_ylim(top=0)
axes[1].set_ylim(bottom=-1.5 * settle.max())
axes[1].set_xlim(left=0)
axes[1].grid(color="gray", alpha=.5, linestyle='--')
axes[1].tick_params(direction='in')
# 범례 표시
axes[1].legend(loc=1, ncol=3, frameon=True, fontsize=10)
# 예측 데이터 사용 범위 음영 처리 - 단계성토
plt.axvspan(time[step_start_index[0]], final_step_predict_end_date,
alpha=0.1, color='grey', hatch='//')
# 예측 데이터 사용 범위 음영 처리 - 기존 및 비선형 쌍곡선
plt.axvspan(final_step_start_date, final_step_predict_end_date,
alpha=0.1, color='grey', hatch='\\')
# 예측 데이터 사용 범위 표시 화살표 세로 위치 설정
arrow1_y_loc = 1.3 * min(-settle)
arrow2_y_loc = 1.4 * min(-settle)
# 화살표 크기 설정
arrow_head_width = 0.03 * max(settle)
arrow_head_length = 0.01 * max(time)
# 예측 데이터 사용 범위 화살표 처리 - 단계성토
axes[1].arrow(time[step_start_index[0]], arrow1_y_loc,
final_step_predict_end_date - time[step_start_index[0]], 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_predict_end_date, arrow1_y_loc,
time[step_start_index[0]] - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# 예측 데이터 사용 범위 화살표 처리 - 기존 및 비선형 쌍곡선
axes[1].arrow(final_step_start_date, arrow2_y_loc,
final_step_predict_end_date - final_step_start_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_predict_end_date, arrow2_y_loc,
final_step_start_date - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# Annotation 표시용 공간 설정
space = max(time) * 0.01
# 예측 데이터 사용 범위 범례 표시 - 단계성토
plt.annotate('Data Range Used (Nonlinear + Step Loading)', xy=(final_step_predict_end_date, arrow1_y_loc),
xytext=(final_step_predict_end_date + space, arrow1_y_loc),
horizontalalignment='left', verticalalignment='center')
# 예측 데이터 사용 범위 범례 표시 - 기존 및 비선형 쌍곡선
plt.annotate('Data Range Used (Hyperbolic and Asaoka)', xy=(final_step_predict_end_date, arrow1_y_loc),
xytext=(final_step_predict_end_date + space, arrow2_y_loc),
horizontalalignment='left', verticalalignment='center')
# RMSE 산정 범위 표시 화살표 세로 위치 설정
arrow3_y_loc = 0.55 * min(-settle)
# RMSE 산정 범위 화살표 표시
axes[1].arrow(final_step_predict_end_date, arrow3_y_loc,
final_step_end_date - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_end_date, arrow3_y_loc,
final_step_predict_end_date - final_step_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# RMSE 산정 범위 세로선 설정
axes[1].axvline(x=final_step_end_date, color='silver', linestyle=':')
# RMSE 산정 범위 범례 표시
plt.annotate('RMSE Estimation Section', xy=(final_step_end_date, arrow3_y_loc),
xytext=(final_step_end_date + space, arrow3_y_loc),
horizontalalignment='left', verticalalignment='center')
# RMSE 출력
mybox = {'facecolor': 'white', 'edgecolor': 'black', 'boxstyle': 'round', 'alpha': 0.2}
plt.text(max(time) * 1.04, 0.20 * min(-settle),
r"$\bf{Root\ Mean\ Squared\ Error}$"
+ "\n" + "Original Hyperbolic: %0.3f" % rmse_hyper_original
+ "\n" + "Nonlinear Hyperbolic: %0.3f" % rmse_hyper_nonlinear
+ "\n" + "Nonlinear Hyperbolic (Weighted): %0.3f" % rmse_hyper_weight_nonlinear
+ "\n" + "Asaoka: %0.3f" % rmse_asaoka
+ "\n" + "Nonlinear + Step Loading: %0.3f" % rmse_step,
color='r', horizontalalignment='right',
verticalalignment='top', fontsize='10', bbox=mybox)
# (최종 계측 침하량 - 예측값) 출력
plt.text(max(time) * 1.04, 0.55 * min(-settle),
r"$\bf{Error\ in\ Final\ Settlement}$"
+ "\n" + "Original Hyperbolic: %0.3f" % final_error_hyper_original
+ "\n" + "Nonlinear Hyperbolic: %0.3f" % final_error_hyper_nonlinear
+ "\n" + "Nonlinear Hyperbolic (Weighted): %0.3f" % final_error_hyper_weight_nonlinear
+ "\n" + "Asaoka: %0.3f" % final_error_asaoka
+ "\n" + "Nonlinear + Step Loading: %0.3f" % final_error_step,
color='r', horizontalalignment='right',
verticalalignment='top', fontsize='10', bbox=mybox)
# 파일 이름만 추출
filename = os.path.basename(point_name)
# 그래프 제목 표시
plt.title(filename + ": up to %i%% data used in the final step" % final_step_predict_percent)
# 그래프 저장 (SVG 및 PNG)
# plt.savefig(output_dir + '/' + filename +' %i percent (SVG).svg' %final_step_predict_percent, bbox_inches='tight')
#plt.savefig(output_dir + '/' + filename + ' %i percent (PNG).png' % final_step_predict_percent, bbox_inches='tight')
# 그래프 출력
if plot_show:
plt.show()
# 그래프 닫기 (메모리 소모 방지)
plt.close()
# 예측 완료 표시
print("Settlement prediction is done for " + filename +
" with " + str(final_step_predict_percent) + "% data usage")
# 단계 성토 고려 여부 표시
is_multi_step = True
if len(step_start_index) == 1:
is_multi_step = False
# 반환
axes[1].plot(time_hyper, -sp_hyper_original,
linestyle='--', color='red', label='Original Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_nonlinear,
linestyle='--', color='green', label='Nonlinear Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_weight_nonlinear,
linestyle='--', color='blue', label='Nonlinear Hyperbolic (Weighted)')
axes[1].plot(time_asaoka, -sp_asaoka,
linestyle='--', color='orange', label='Asaoka')
axes[1].plot(time[step_start_index[0]:], -sp_step[step_start_index[0]:],
linestyle='--', color='navy', label='Nonlinear + Step Loading')
return [time_hyper, sp_hyper_original,
time_hyper, sp_hyper_nonlinear,
time_hyper, sp_hyper_weight_nonlinear,
time_asaoka, sp_asaoka,
time[step_start_index[0]:], sp_step[step_start_index[0]:],
rmse_hyper_original,
rmse_hyper_nonlinear,
rmse_hyper_weight_nonlinear,
rmse_asaoka,
rmse_step,
final_error_hyper_original,
final_error_hyper_nonlinear,
final_error_hyper_weight_nonlinear,
final_error_asaoka,
final_error_step]
'''
run_settle_prediction(input_file='data/2-5_No.39.csv',
output_dir='output',
final_step_predict_percent=50,
additional_predict_percent=100,
plot_show=True,
print_values=True,
run_original_hyperbolic=True,
run_nonlinear_hyperbolic=True,
run_weighted_nonlinear_hyperbolic=True,
run_asaoka=True,
run_step_prediction=True,
asaoka_interval=3,
settle_unit='cm')
'''

View File

@ -5,11 +5,12 @@ Sang Inn Woo, Ph.D. @ Incheon National University
Starting Date: 2022-11-10
"""
import psycopg2 as pg2
import sys
import numpy as np
import settle_prediction_steps_main
import matplotlib.pyplot as plt
import sys
import pdb
'''
apptb_surset01
@ -25,15 +26,32 @@ nod: number of date
def settlement_prediction(business_code, cons_code):
# connect the database
connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432") # local
#connection = pg2.connect("host=192.168.0.13 dbname=sgis user=sgis password=sgis port=5432") # ICTWay internal
#connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432") # SW local
#connection = pg2.connect("host=localhost dbname=sgis user=postgres password=postgres port=5434") # ICTWay local
# connect the database
try:
# 디비엔텍 DB서버
connection = pg2.connect("host=10.dbnt.co.kr dbname=sgis_new user=smartgeoinfo password=Smartgeoinfo1! port=55432")
print(f"[OK] DB 접속 성공: {connection.get_dsn_parameters()['host']}")
except pg2.OperationalError as e:
print(f"[Error] DB 접속 실패: {e}")
sys.exit(1)
# set cursor
cursor = connection.cursor()
# select monitoring data for the monitoring point
postgres_select_query = """SELECT * FROM apptb_surset02 WHERE business_code='""" + business_code \
postgres_select_query = """SELECT amount_cum_sub, fill_height, nod FROM apptb_surset02 WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code + """' ORDER BY nod ASC"""
'''
변경사항
(amount_cum_sub * -1) --> amount_cum_sub
침하예측은 부호의 영향을 크게 받습니다.
현재 개발이 침하량 양수를 기준으로 되어 있어, 양수를 넘겨 줘야 합니다.
여기서는 일단 데이터 그대로 받습니다.
'''
cursor.execute(postgres_select_query)
monitoring_record = cursor.fetchall()
@ -44,8 +62,12 @@ def settlement_prediction(business_code, cons_code):
# fill lists
for row in monitoring_record:
settlement.append(float(row[6]))
surcharge.append(float(row[8]))
# DB 값이 NULL(None)이면 건너뜀 (에러 방지)
if row[0] is None or row[1] is None or row[2] is None:
continue
settlement.append(float(row[0]))
surcharge.append(float(row[1]))
time.append(float(row[2]))
# convert lists to np arrays
@ -53,25 +75,34 @@ def settlement_prediction(business_code, cons_code):
surcharge = np.array(surcharge)
time = np.array(time)
# adjust the sign
sgn = 1
if np.average(settlement) < 0:
sgn = -1
settlement = sgn * settlement
'''
변경사항
침하 예측은 부호의 영향을 크게 받습니다.
만일 평균 침하량의 부호가 음수라면,
침하량이 음수로 기입되어있다고 보고,
양수로 변환시킵니다.
'''
# run the settlement prediction and get results
results = settle_prediction_steps_main.run_settle_prediction(point_name=cons_code, np_time=time,
results = (settle_prediction_steps_main.
run_settle_prediction(point_name=cons_code, np_time=time,
np_surcharge=surcharge, np_settlement=settlement,
final_step_predict_percent=90,
additional_predict_percent=300, plot_show=False,
print_values=False, run_original_hyperbolic=True,
run_nonlinear_hyperbolic=True,
run_weighted_nonlinear_hyperbolic=True,
run_asaoka=True, run_step_prediction=True,
asaoka_interval=3)
additional_predict_percent=300,
asaoka_interval=3))
# prediction method code
# 1: original hyperbolic method
# 2: nonlinear hyperbolic method
# 3: weighted nonlinear hyperbolic method
# 4: Asaoka method
# 5: Step loading
# 1: original hyperbolic method (쌍곡선법)
# 2: nonlinear hyperbolic method (비선형 쌍곡선법)
# 3: weighted nonlinear hyperbolic method (가중 비선형 쌍곡선법)
# 4: Asaoka method (아사오카법)
# 5: Step loading (단계성토 고려법)
'''
time_hyper, sp_hyper_original,
@ -104,7 +135,14 @@ def settlement_prediction(business_code, cons_code):
+ """VALUES (%s, %s, %s, %s, %s)"""
# set data to insert
record_to_insert = (business_code, cons_code, time[j], predicted_settlement[j], i + 1)
#record_to_insert = (business_code, cons_code, time[j], -predicted_settlement[j], i + 1)
record_to_insert = (business_code, cons_code, float(time[j]), float(-predicted_settlement[j]), i + 1)
'''
변경사항
predicted_settlement[j] --> -predicted_settlement[j]
여기서 침하예측값의 부호를 음수로 설정해서 DB에 저장합니다.
'''
# execute the insert query
cursor.execute(postgres_insert_query, record_to_insert)
@ -112,21 +150,20 @@ def settlement_prediction(business_code, cons_code):
# commit changes
connection.commit()
a = 0
def read_database_and_plot(business_code, cons_code):
# connect the database
connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432")
# connection = pg2.connect("host=192.168.0.13 dbname=sgis user=sgis password=sgis port=5432") # ICTWay internal
connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432") #SW local
#connection = pg2.connect("host=192.168.0.72 dbname=sgis user=sgis password=sgis port=5432") # ICTWay internal
# set cursor
cursor = connection.cursor()
# select monitoring data for the monitoring point
postgres_select_query = """SELECT * FROM apptb_surset02 WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code + """' ORDER BY nod ASC"""
postgres_select_query = ("""SELECT amount_cum_sub, fill_height, nod FROM apptb_surset02 WHERE business_code='"""
+ business_code + """' and cons_code='""" + cons_code + """' ORDER BY nod ASC""")
cursor.execute(postgres_select_query)
monitoring_record = cursor.fetchall()
@ -137,9 +174,9 @@ def read_database_and_plot(business_code, cons_code):
# fill lists
for row in monitoring_record:
settlement_monitored.append(float(row[0]))
surcharge_monitored.append(float(row[1]))
time_monitored.append(float(row[2]))
settlement_monitored.append(float(row[6]))
surcharge_monitored.append(float(row[8]))
# convert lists to np arrays
settlement_monitored = np.array(settlement_monitored)
@ -147,16 +184,20 @@ def read_database_and_plot(business_code, cons_code):
time_monitored = np.array(time_monitored)
# prediction method code
# 0: original hyperbolic method
# 1: nonlinear hyperbolic method
# 2: weighted nonlinear hyperbolic method
# 3: Asaoka method
# 4: Step loading
# 5: temp
# 1: original hyperbolic method
# 2: nonlinear hyperbolic method
# 3: weighted nonlinear hyperbolic method
# 4: Asaoka method
# 5: Step loading
time_predicted_series = []
settlement_predicted_series = []
for i in range(5):
# temporarily set the prediction method as 0
postgres_select_query = """SELECT prediction_progress_days, predicted_settlement """ \
+ """FROM apptb_pred02_no""" + str(1) \
+ """FROM apptb_pred02_no""" + str(i + 1) \
+ """ WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code \
+ """' ORDER BY prediction_progress_days ASC"""
@ -174,9 +215,9 @@ def read_database_and_plot(business_code, cons_code):
time_predicted.append(float(row[0]))
settlement_predicted.append(float(row[1]))
# convert lists to np arrays
settlement_predicted = np.array(settlement_predicted)
time_predicted = np.array(time_predicted)
# add lists to series
time_predicted_series.append(np.array(time_predicted))
settlement_predicted_series.append(np.array(settlement_predicted))
# 그래프 크기, 서브 그래프 개수 및 비율 설정
fig, axes = plt.subplots(2, 1, figsize=(8, 6), gridspec_kw={'height_ratios': [1, 3]})
@ -193,23 +234,41 @@ def read_database_and_plot(business_code, cons_code):
# 계측 및 예측 침하량 표시
axes[1].scatter(time_monitored, -settlement_monitored, s=30,
facecolors='white', edgecolors='black', label='measured data')
facecolors='white', edgecolors='grey', label='measured data')
axes[1].plot(time_predicted, -settlement_predicted,
axes[1].plot(time_predicted_series[0], settlement_predicted_series[0],
linestyle='--', color='red', label='Original Hyperbolic')
axes[1].plot(time_predicted_series[1], settlement_predicted_series[1],
linestyle='--', color='blue', label='Nonlinear Hyperbolic')
axes[1].plot(time_predicted_series[2], settlement_predicted_series[2],
linestyle='--', color='black', label='Weighted Nonlinear Hyperbolic')
axes[1].plot(time_predicted_series[3], settlement_predicted_series[3],
linestyle='--', color='olive', label='Asaoka')
axes[1].plot(time_predicted_series[4], settlement_predicted_series[4],
linestyle='--', color='navy', label='Step Loading Hyperbolic')
axes[0].set_ylabel("Settlement (cm)", fontsize=10)
axes[1].legend()
axes[1].set_ylim(top=0)
axes[1].set_xlim(left=0)
axes[1].set_xlim(right=np.max(time_predicted))
plt.show()
# script to call: python3 controller.py [business_code] [cons_code]
# for example:
# for example: python3 controller.py 221222SA0003 CONS001
if __name__ == '__main__':
# Example site 1: 231229SA0001, CONS017
# Example site 2: 231229SA0006, CONS061
args = sys.argv[1:]
business_code = args[0]
cons_code = args[1]
settlement_prediction(business_code = business_code, cons_code = cons_code)
print("The settlement prediction is over.")
read_database_and_plot(business_code=business_code, cons_code=cons_code)
print("Visualization is over.") #DB 입력 결과 확인 시에 활성화 / 평소에는 비활성화
#read_database_and_plot(business_code=business_code, cons_code=cons_code)
#print("Visualization is over.")

BIN
error_analysis.zip Normal file

Binary file not shown.

273
error_multi_step.csv Normal file
View File

@ -0,0 +1,273 @@
,File,Data_usage,RMSE_hyper_original,RMSE_hyper_nonlinear,RMSE_step,Final_error_hyper_original,Final_error_hyper_nonlinear,Final_error_step
0,data\1_S-1.csv,20,23.478646116979654,16.776209296837532,11.120719833394293,31.147089838760067,16.776209296837532,34.39703383058222
1,data\1_S-1.csv,30,12.402243644854485,5.208861608476322,2.150195941283636,13.42602435195194,5.208861608476322,17.88176228477299
2,data\1_S-1.csv,40,5.5477225601078475,2.4340047901478026,6.124088322692104,3.137413028656972,2.4340047901478026,6.698331612401873
3,data\1_S-1.csv,50,1.4243573608600337,5.339485942822988,7.291387329162888,1.5491904788507092,5.339485942822988,0.18927190226409607
4,data\1_S-1.csv,60,1.2405425139403812,5.484226338578135,5.7050750283865845,2.4292610036214497,5.484226338578135,1.4831090032904086
5,data\1_S-1.csv,70,1.597066962397822,4.027720666840552,2.7608737957120946,1.0042867085237617,4.027720666840552,1.540451618948424
6,data\1_S-1.csv,80,1.5539368201809547,3.3570950843708673,1.8277216110401846,0.3671659497912856,3.3570950843708673,1.1246294275445763
7,data\1_S-1.csv,90,1.1605550014743073,2.5042477994964543,0.8365472478337495,0.3815598208090165,2.5042477994964543,0.5605550014742988
8,data\1_S-10.csv,20,2.250454268092718,11.945795822232032,14.022426652187274,5.458857525298658,12.78210944667846,4.480921480938093
9,data\1_S-10.csv,30,1.4798556806649208,4.5201471879813395,1.2820054079359062,5.56697174346722,6.187128156863005,2.9409475590047975
10,data\1_S-10.csv,40,2.5831593209425114,1.5068804246967553,3.9556125069100414,7.327682225114709,1.2159945876728537,4.603069473692216
11,data\1_S-10.csv,50,3.0493487660606946,2.5290835903126405,3.781342127791944,6.543763194275195,0.7580449556824689,4.96050056705603
12,data\1_S-10.csv,60,2.753018935138921,2.4773563031889623,2.4829685067950007,5.197657553387721,1.1114680943428539,4.144430467497713
13,data\1_S-10.csv,70,2.057161629717554,1.852262568800247,1.125746596630284,3.5981758084098927,0.7917721159345887,2.9539000368872053
14,data\1_S-10.csv,80,1.385275833572099,1.222635822549523,0.21141515162913316,3.0372816823669457,0.28624544571854166,2.055521208384789
15,data\1_S-10.csv,90,1.2289805279797732,1.1001404713990144,0.17079561302316265,2.659062579968389,0.22576196364864093,1.687906445950702
16,data\1_S-11.csv,20,12.780165484446645,3.543442987743452,3.826654330541223,14.142903035702759,2.8057093191787796,18.591421005556583
17,data\1_S-11.csv,30,8.950467372059691,1.8083726479927158,0.600058015048404,10.92937956217384,1.2372043888069384,13.038668567087655
18,data\1_S-11.csv,40,6.0781469397310275,2.0814044264045988,1.9762362900266666,8.545036423072245,1.6105013874823666,8.905430697186034
19,data\1_S-11.csv,50,4.354144249638527,1.830001873935883,1.5994546831172567,6.658170772673151,1.4688426083053616,6.377174516981569
20,data\1_S-11.csv,60,3.0600926275659055,1.5911267267597402,1.253477114943287,5.316149584849218,1.336850488399163,4.339127785422562
21,data\1_S-11.csv,70,2.0782232665915683,1.023377922742072,0.4250838856090123,3.7693273765738313,0.8323985798147107,2.8678089286949273
22,data\1_S-11.csv,80,1.3106083121407994,0.46948359525194167,0.24458020822699267,3.2221638079518704,0.29468631398794154,1.9290492102943517
23,data\1_S-11.csv,90,1.1328843800677029,0.4200675824984277,0.12988845884140596,2.8519660229689157,0.2547636891884459,1.574556969531173
24,data\1_S-12.csv,20,2.7120407627429746,7.298582927104371,8.599569444991946,13.542896407505745,2.6778432237681407,4.889581454963832
25,data\1_S-12.csv,30,5.402183151249969,7.687632014330983,7.420643449273505,12.39344963386265,3.7415741342788835,8.386482482784231
26,data\1_S-12.csv,40,4.394685384926156,4.845951876514215,2.4643841148224466,6.954026249999055,2.412851448737444,6.4929381725025905
27,data\1_S-12.csv,50,3.2605713395995304,3.1319161474217667,0.8446842192946161,4.935018097624205,1.4510820822297386,4.728667992653101
28,data\1_S-12.csv,60,1.9783184512590368,1.569473731965631,0.6435496596366582,2.850940115587415,0.5703161045481381,2.95931761635174
29,data\1_S-12.csv,70,1.0000004382811707,0.5560357418512717,0.8212550238314622,2.1698581422986623,0.38681115435021735,1.7765112770664189
30,data\1_S-12.csv,80,0.8241746816026769,0.45382185232957534,0.3656309038475283,1.8254973815355815,0.3919724859787349,1.4696145959291016
31,data\1_S-12.csv,90,0.7085626123177089,0.417602660005857,0.07822953821441234,1.4335822794754267,0.32528847438603103,1.199407747704015
32,data\1_S-15.csv,20,0.2880082260432656,0.31324495710969785,0.3234024531936505,0.4022129400876201,0.31324495710969785,0.5801711693735285
33,data\1_S-15.csv,30,0.2612327425554409,0.1982982487483713,0.13414140830370697,0.15485897379953692,0.1982982487483713,0.45587398459380846
34,data\1_S-15.csv,40,0.1627146650925451,0.0847291405415234,0.033866481436163935,0.038989961050724664,0.0847291405415234,0.26057510197224854
35,data\1_S-15.csv,50,0.09403647123965381,0.03947355449793594,0.010432214231313604,0.016236014905314802,0.03947355449793594,0.14077931124954113
36,data\1_S-15.csv,60,0.05952893520483399,0.023106062873209498,0.005335595378394103,0.005718866196795912,0.023106062873209498,0.08386450933302625
37,data\1_S-15.csv,70,0.04473399276446019,0.016377408145597953,0.003981572071803215,0.0022423032047758674,0.016377408145597953,0.06066449965583809
38,data\1_S-15.csv,80,0.033746284419315604,0.014448091335809161,0.006681360997480904,0.007188935630891185,0.014448091335809161,0.04113326606019707
39,data\1_S-15.csv,90,0.02766081220100747,0.013596987999911315,0.007021701057583198,0.006864032090390862,0.013596987999911315,0.028039740265827118
40,data\1_S-16.csv,20,3.3040962181845503,2.5459436259747408,1.45493861867461,3.3531886022017394,2.5459436259747408,5.830754051237456
41,data\1_S-16.csv,30,3.397577659982119,2.1593623899054246,3.4385208065435036,6.806972770490538,2.1593623899054246,5.463521952189097
42,data\1_S-16.csv,40,3.5615235188381624,3.0031596961493916,3.530913385578609,6.7713581454297,3.0031596961493916,5.321234213446772
43,data\1_S-16.csv,50,2.979305758737618,2.456347223799883,2.003799792080917,4.62235381428586,2.456347223799883,4.208604160138584
44,data\1_S-16.csv,60,2.440684687417658,1.9674064134436176,1.3030765444312726,3.7587013753882332,1.9674064134436176,3.219011843360569
45,data\1_S-16.csv,70,1.9611474785668164,1.5509606603565687,0.8011290107342396,2.4317880070651103,1.5509606603565687,2.378298589011777
46,data\1_S-16.csv,80,1.147210901886969,0.7794500638783542,0.25842333575239057,1.0220331261428133,0.7794500638783542,1.4548249995786477
47,data\1_S-16.csv,90,0.6658320594808093,0.3599471149325066,0.3460836953388925,1.153154586718134,0.3599471149325066,0.9885512420661939
48,data\1_S-17.csv,20,14.817149675077845,11.00820026665355,9.160227086888597,19.49554522452195,11.00820026665355,22.114584610703353
49,data\1_S-17.csv,30,12.619854078927927,9.134481442421977,6.9071576082667425,16.03629997348982,9.134481442421977,17.657859773028946
50,data\1_S-17.csv,40,9.602067756400896,6.47474795338568,4.084271910648953,11.477366749731411,6.47474795338568,12.643407243916172
51,data\1_S-17.csv,50,6.782687807338599,3.914529880205498,1.207594132519305,6.842442053294446,3.914529880205498,8.457968207762192
52,data\1_S-17.csv,60,4.4393395624054275,2.0008384382997764,0.7688263011902206,4.276987675473648,2.0008384382997764,5.234788630782006
53,data\1_S-17.csv,70,2.931857444605733,1.0695640076905621,0.9273110304857721,3.2225789084675727,1.0695640076905621,3.2388963393675
54,data\1_S-17.csv,80,1.630643658296253,0.3125213348966345,1.1612740930672463,1.8326739324209824,0.3125213348966345,1.8464644601669704
55,data\1_S-17.csv,90,0.9032383117232653,0.24827782525448813,0.9587919569314237,1.674370356936783,0.24827782525448813,1.184956388177838
56,data\1_S-18.csv,20,4.8569683354725655,8.370185056504068,9.972599263436887,14.865095422926293,8.370185056504068,9.978111512340448
57,data\1_S-18.csv,30,7.502879610626537,9.170910252757494,9.19044618685778,13.6454883261436,9.170910252757494,13.302444006063652
58,data\1_S-18.csv,40,7.138752761075896,7.328752844478417,5.329825897187873,9.095760769015405,7.328752844478417,11.980402617417937
59,data\1_S-18.csv,50,5.233986629512829,4.185885403593828,0.783413059416807,3.6322332834046427,4.185885403593828,8.773198466234518
60,data\1_S-18.csv,60,3.67241324585774,2.169070128892058,0.7783608535039951,2.154039188017579,2.169070128892058,6.401575843298858
61,data\1_S-18.csv,70,2.5424291135664294,1.1802477097783282,0.4923296701790672,2.064256197436636,1.1802477097783282,4.5863843876741015
62,data\1_S-18.csv,80,2.316459386629839,1.1667965600421817,0.4129961986646059,1.7712363628695194,1.1667965600421817,3.931515685511968
63,data\1_S-18.csv,90,2.2309174292325835,1.2202603294310326,0.6119224915467529,1.215885316632567,1.2202603294310326,3.3551102882782544
64,data\1_S-19.csv,20,0.4813921356094701,0.38645090597916665,0.262085380838314,,0.38645090597916665,0.14662814292741366
65,data\1_S-19.csv,30,0.2542390778983757,0.4486975357849197,0.9538761866430289,1.4578288563061808,0.4486975357849197,0.44082650844485194
66,data\1_S-19.csv,40,0.31581380528892206,0.3508458151659684,0.3483818926223097,0.38722202897310515,0.3508458151659684,0.5728220719268533
67,data\1_S-19.csv,50,0.4289141972590556,0.47865360212276115,0.5717551474263084,0.17735833501852744,0.47865360212276115,0.732654069325152
68,data\1_S-19.csv,60,0.6124097428850761,0.6727217066022969,0.7994377009874323,0.5650083536577103,0.6727217066022969,0.9069841958082296
69,data\1_S-19.csv,70,0.5623432486393993,0.5988132191913642,0.5105750432737622,0.3048821664614563,0.5988132191913642,0.744300913392955
70,data\1_S-19.csv,80,0.4580512395915517,0.5006204677271572,0.32797151283517634,0.22446438982174222,0.5006204677271572,0.5387456623125226
71,data\1_S-19.csv,90,0.3623750170500113,0.42372832622671464,0.2209220631754878,0.18242844832152194,0.42372832622671464,0.3623750170500113
72,data\1_S-2.csv,20,29.13824269821142,32.97006600177633,32.21195457337266,50.98953962583674,32.97006600177633,75.5054893685952
73,data\1_S-2.csv,30,29.094378311540368,26.78893971941293,24.057354502241488,45.95952965698194,26.78893971941293,69.77267293076979
74,data\1_S-2.csv,40,25.668812328945442,19.737664954989953,16.573301668930714,24.389044284038413,19.737664954989953,52.38088891618217
75,data\1_S-2.csv,50,21.583732110692612,13.578484970142826,9.284277402492405,12.336281678713968,13.578484970142826,37.166154284409075
76,data\1_S-2.csv,60,16.62078573542056,8.641182434779754,4.371591913792901,6.562214890034458,8.641182434779754,25.272718668872173
77,data\1_S-2.csv,70,10.811437650017501,4.671426204672148,1.3020176782522703,3.462313585656565,4.671426204672148,14.045796578049647
78,data\1_S-2.csv,80,9.173065296379605,3.754546671085857,0.7442237783985166,2.5270190520652127,3.754546671085857,10.64978363276596
79,data\1_S-2.csv,90,7.478016107420814,3.0808772341682698,0.5970427746556197,2.4566348296251874,3.0808772341682698,6.8780161074208195
80,data\1_S-20.csv,20,1.5991320251442396,0.734274177067469,0.5024653897933992,,0.734274177067469,1.6181966710915923
81,data\1_S-20.csv,30,0.983467706082507,0.5566263918424004,1.1599839311022724,0.6891888364909496,0.5566263918424004,0.6205457463884416
82,data\1_S-20.csv,40,1.0445947683198489,1.8102553204615202,1.7764261241719057,3.0507083248841558,1.8102553204615202,2.0625130717155606
83,data\1_S-20.csv,50,1.0135995303584442,1.2428489549759612,0.8261289496652552,1.3546541436513129,1.2428489549759612,1.8588171166887548
84,data\1_S-20.csv,60,0.9359575571420113,0.9239063949715502,0.6167255864523585,0.9803172858616156,0.9239063949715502,1.5791947067579333
85,data\1_S-20.csv,70,1.0160045814445942,0.9713676236655032,0.8095088685500043,0.9647285147730768,0.9713676236655032,1.4728692385142317
86,data\1_S-20.csv,80,0.9330057968496768,0.8398552977157308,0.6027524648118354,0.8579451894453256,0.8398552977157308,1.147925727916272
87,data\1_S-20.csv,90,0.7810454819952506,0.6916580785283166,0.4052801175930112,0.5899582590956429,0.6916580785283166,0.7810454819952506
88,data\1_S-3.csv,20,31.079801282684922,20.79725899625463,6.818060318938833,28.308551362298864,20.79725899625463,47.238716900050875
89,data\1_S-3.csv,30,15.753554144633085,2.6352848578842987,6.859721543987546,4.702100098681567,2.6352848578842987,23.36498322819596
90,data\1_S-3.csv,40,6.0485793575074664,7.374862524981409,9.794646700171079,5.6935020904941345,7.374862524981409,6.835073565304668
91,data\1_S-3.csv,50,2.094048920603935,8.202986587700892,8.159727175403006,6.144855383897656,8.202986587700892,0.270197824992394
92,data\1_S-3.csv,60,1.4543199299679703,7.237301240068834,5.981863502688744,5.584626897838916,7.237301240068834,2.1218242419079445
93,data\1_S-3.csv,70,2.19394289660755,5.393455869919254,3.609877616358329,3.771152629539646,5.393455869919254,2.6421432980650223
94,data\1_S-3.csv,80,2.4322158153771154,4.8844137991230685,2.9524536403368833,2.6133509468069507,4.8844137991230685,2.352481088106998
95,data\1_S-3.csv,90,2.734140059942362,4.359378633827035,2.227164224763243,2.404017139031467,4.359378633827035,1.5341400599423594
96,data\1_S-4.csv,20,28.378259539192584,20.76394535575388,14.033947286055122,33.956392919022214,20.76394535575388,45.99094608090661
97,data\1_S-4.csv,30,16.61106216131759,8.942811079170239,3.4524341187436187,18.710539650936383,8.942811079170239,26.84827159237942
98,data\1_S-4.csv,40,9.797519852171225,2.5496599587282107,3.319788316482909,8.412714329822519,2.5496599587282107,14.194926674696305
99,data\1_S-4.csv,50,6.125834599642608,2.6040335337737477,5.850573674531381,1.9179721973123014,2.6040335337737477,7.993250496636364
100,data\1_S-4.csv,60,2.8788592236974906,4.206983125971776,5.795766591760959,1.7072180407065176,4.206983125971776,3.461211024688268
101,data\1_S-4.csv,70,0.4085160425472198,4.062087348253181,3.7531585944730246,1.6008828051224104,4.062087348253181,0.6633379205306653
102,data\1_S-4.csv,80,0.47595142031207355,3.724576037953115,2.999485225439125,0.5935342876852995,3.724576037953115,0.5578013561442674
103,data\1_S-4.csv,90,0.4702196369976548,2.770238687192787,1.4789221203064358,0.09388708245413113,2.770238687192787,0.729780363002348
104,data\1_S-5.csv,20,1.967727423890477,1.3254354393668206,1.945810601215972,1.9607824925465678,1.3254354393668206,0.1874346159763789
105,data\1_S-5.csv,30,1.4382082353192773,1.919434236053275,2.533465805806511,2.023289939059952,1.919434236053275,2.9894571542230324
106,data\1_S-5.csv,40,2.7465167206481573,4.409602595386762,5.291501886071811,5.725165924900896,4.409602595386762,6.266108561419188
107,data\1_S-5.csv,50,3.461920761656759,4.381575529957983,4.275659286339894,5.075875198611303,4.381575529957983,6.925871218956949
108,data\1_S-5.csv,60,4.361846022920693,4.604849959229172,4.196889816830964,4.208858373774062,4.604849959229172,6.861029398211379
109,data\1_S-5.csv,70,4.3969327856562845,4.205632373475578,3.4012384137145903,3.2719092143242556,4.205632373475578,6.121369526288497
110,data\1_S-5.csv,80,4.096266723294103,3.499985586090912,2.3855823394470796,2.1966796537602513,3.499985586090912,4.9464799766905685
111,data\1_S-5.csv,90,3.4604082851893114,2.689997383766356,1.47402197284386,1.2253835699076183,2.689997383766356,3.58886013074747
112,data\1_S-6.csv,20,3.053759492348517,2.001309307753893,0.8290155196979421,4.399864757510363,2.001309307753893,4.949978925908944
113,data\1_S-6.csv,30,0.6616315454047025,2.8758400900404943,4.735312554782918,2.3907096778655346,2.8758400900404943,1.1719061933164738
114,data\1_S-6.csv,40,1.8154121853645282,3.2214327224410306,3.2778392243914536,2.5461929166560875,3.2214327224410306,3.0045898440710985
115,data\1_S-6.csv,50,1.296886856905884,1.4915193295518268,0.6728501717871729,0.639996196106986,1.4915193295518268,1.9737040590938761
116,data\1_S-6.csv,60,0.8015748472732784,0.696411033119271,0.26372552323457404,0.5934316617703056,0.696411033119271,1.0438148406506542
117,data\1_S-6.csv,70,0.7876144436121876,0.6730390296235668,0.3217870993721718,0.1265165575151855,0.6730390296235668,0.8848022965429507
118,data\1_S-6.csv,80,0.8779263334065708,0.7750307740182709,0.5374422060703334,0.4493235452909501,0.7750307740182709,0.8055827182868924
119,data\1_S-6.csv,90,0.7501681896633152,0.6416649676648516,0.3558228026883899,0.12849860415305325,0.6416649676648516,0.5189720146847918
120,data\1_S-7.csv,20,5.365254081514151,3.8657561591156813,3.8093740674211998,6.2385985725116875,3.8657561591156813,12.931787976643314
121,data\1_S-7.csv,30,6.020986058758559,6.135746944313514,6.748313062661424,7.534740868368928,6.135746944313514,12.642457532575591
122,data\1_S-7.csv,40,5.674619852269969,4.703357957475107,3.8463807465185167,5.468678771443814,4.703357957475107,10.682921494145674
123,data\1_S-7.csv,50,3.4690575924798996,1.8878183084882048,0.8755075833559937,1.6025113529316266,1.8878183084882048,6.0995707396998
124,data\1_S-7.csv,60,2.7451423754747624,1.4731986021963825,0.8469142936908258,1.2925956551006061,1.4731986021963825,4.257652913170311
125,data\1_S-7.csv,70,2.7072833040182207,1.5925145664383469,1.156536439526758,1.5625936995519176,1.5925145664383469,3.8279131225302976
126,data\1_S-7.csv,80,2.621881865553797,1.7290734621115118,1.3650423959522893,1.721165557371262,1.7290734621115118,3.000226554513077
127,data\1_S-7.csv,90,2.266894911924734,1.4570027185864196,0.9445565509743197,1.0957970213384967,1.4570027185864196,2.2733706960531137
128,data\1_S-8.csv,20,18.11867407113544,14.215247739318466,9.511025244297006,22.404300227967695,13.446664866431115,26.01883685539876
129,data\1_S-8.csv,30,14.514699952893631,11.335799950369877,8.947236678349666,17.58355261139789,10.86796392608233,18.834907128584675
130,data\1_S-8.csv,40,11.075185948305768,6.8509390887115895,2.6457376862208544,9.530043636696428,6.673867126195534,13.50020958026542
131,data\1_S-8.csv,50,7.186567380657684,2.8339403044579425,1.4744207009933934,3.85833262551545,2.7885364868377245,7.98665931754185
132,data\1_S-8.csv,60,4.170061258682651,0.9040062070909864,2.733241309408221,1.1686720201047711,0.9105324134896468,3.986163533267458
133,data\1_S-8.csv,70,1.5780417387192855,1.4050145672359917,2.4869013753578524,0.35952798393250346,1.4178734518905698,0.8413080660591419
134,data\1_S-8.csv,80,0.5058499106073733,1.6205084705479829,1.950904027163278,0.4184494053158285,1.6366433460233913,0.23664910840155073
135,data\1_S-8.csv,90,0.4578779578295943,1.6313760499123662,1.4543709314629694,0.2256783271406,1.6521997346239476,0.4691400149420417
136,data\1_S-9.csv,20,23.23466856539556,14.38965667065365,5.812478485735811,11.415193360584711,17.60095766072406,35.798616223799556
137,data\1_S-9.csv,30,8.740016212536279,1.254088481183067,5.286134059469931,6.8867355672344175,4.699099274275911,11.926173764268128
138,data\1_S-9.csv,40,0.7725497801920852,4.342346270472876,6.044221052095922,8.128363400745855,0.8423842661623222,0.2591634095472699
139,data\1_S-9.csv,50,1.604201044849245,4.046644394358106,3.936626436981537,6.002530432463326,0.828713418284349,2.384399117848659
140,data\1_S-9.csv,60,1.3390917223895678,2.428693627890554,1.2271797874647459,3.816309142062488,1.0597756937496738,1.7585285077495598
141,data\1_S-9.csv,70,1.2202180455836111,1.9103128992797382,0.771291803280165,3.0048787355486817,1.310797523750748,1.346145339351395
142,data\1_S-9.csv,80,0.5617299433168577,0.9928155840050683,0.4728782399995845,1.4040243056990842,1.8418478186652112,0.6723892700070877
143,data\1_S-9.csv,90,0.22486696052940594,0.5792833717765682,0.5607951645765684,1.3539869222261414,2.1243071866986516,0.4806282542646869
144,data\1_SP-11.csv,20,1.7081991927226081,7.2313561231667896,1.0953656139037249,6.18712689484869,3.5433619581079885,2.7577460356066013
145,data\1_SP-11.csv,30,1.5756064331383481,1.4508379762295698,4.667981912115056,10.672594578553554,1.617156571881448,2.3383819412964613
146,data\1_SP-11.csv,40,1.666416631660893,1.9147387544365118,2.7246884581594735,3.5102269392885606,2.0539228359031503,2.3988648053252746
147,data\1_SP-11.csv,50,2.292818865830556,3.0276355451630215,3.857923628067331,5.7946017504485265,3.032368564205978,3.384991365221879
148,data\1_SP-11.csv,60,1.889989812312286,1.7249795942495172,1.2640582684881747,2.526077644495358,2.0433210528715673,1.979183768159885
149,data\1_SP-11.csv,70,2.103608751730582,1.8058365765796776,1.2951201482171344,1.9073165276319612,2.238909008345376,1.5961519844577197
150,data\1_SP-11.csv,80,1.8788628904767846,1.162865729788941,0.31047591858649476,1.1848375699933602,2.0019114454225315,0.7574673332335351
151,data\1_SP-11.csv,90,1.6578045150943486,0.8013356838663631,0.08523995237079618,0.3893484790967483,1.835912955550954,0.38333311153473915
152,data\1_SP-13.csv,20,0.4372325497058458,3.6243420678089686,4.851065851031277,7.415206093573297,0.6251074747335184,1.7710273059890653
153,data\1_SP-13.csv,30,0.7131156843560439,1.182411372082287,0.8606939440943202,2.1000835574758305,0.49852265726353917,2.4215488717810274
154,data\1_SP-13.csv,40,0.4278189077600768,0.39601474936665476,0.4303011088176812,2.735854312131982,0.8957677532161553,1.6593554681574574
155,data\1_SP-13.csv,50,1.4339059010061033,1.9491290609659973,2.136544531646112,2.656249815428144,0.7047311863777824,3.555367659593287
156,data\1_SP-13.csv,60,0.39242710983822804,0.15258643592231405,0.8714892516916322,1.3278099872124942,0.5322267611739026,1.826726679179444
157,data\1_SP-13.csv,70,0.18072037145060008,0.2617744847181645,0.5737992763703951,1.261638455555825,0.691105669926377,1.538114979348677
158,data\1_SP-13.csv,80,0.17867732178011012,0.1735062337331057,0.20455691893679187,0.40809888582969184,0.698209101804319,1.4847208692700917
159,data\1_SP-13.csv,90,0.19491393115805777,0.12209966495242676,0.10135028752760396,0.4554548974773021,0.6823303798309936,1.457893307596379
160,data\1_SP-17.csv,20,18.507066346497727,18.605257986168017,18.699978439884738,8.520723473217428,9.226100175280822,27.98292250374635
161,data\1_SP-17.csv,30,5.320558014435307,4.776189146250437,16.926096406129528,31.302259975691005,4.6214332180141895,6.7712262129747955
162,data\1_SP-17.csv,40,1.7586801283380498,4.547990441524903,5.21303935131053,3.797922268658988,4.561169272178184,2.087240103886984
163,data\1_SP-17.csv,50,2.7919874072221913,3.499394713176624,3.424666858660793,3.6674731091011044,3.661841220811493,4.753699240913875
164,data\1_SP-17.csv,60,4.509512187046268,5.062010812243616,4.965508498242809,6.293231675366611,5.19153025332887,6.083450351519332
165,data\1_SP-17.csv,70,4.477434583027644,4.415713384649314,2.973290496836599,2.715851907697277,4.835842604836214,4.835569684490849
166,data\1_SP-17.csv,80,4.118355090968156,3.5969326524892806,1.60282498572747,1.6372084145126302,4.409162438716603,3.485338713566364
167,data\1_SP-17.csv,90,3.5226698829318543,2.7625898354405023,0.6674499662480333,0.9570607962268323,3.912308283959222,2.436228051133355
168,data\1_SP-18.csv,20,7.606253940268715,15.613827267689272,16.31429809958159,21.055177174811675,16.01873246119757,18.570240961687887
169,data\1_SP-18.csv,30,14.367568344429996,18.4759301869696,17.811077331371575,21.26918604052492,18.839682917325284,29.252580611697567
170,data\1_SP-18.csv,40,15.142173533690988,15.260101482485425,12.895880292773695,12.11525582622308,16.025220403227284,28.06859674552618
171,data\1_SP-18.csv,50,13.236830193943605,11.361940339119686,9.147532937341081,10.380721972228644,12.690863720611114,21.247994508968986
172,data\1_SP-18.csv,60,12.572109779868718,10.373045747898717,7.8403567771617455,7.475192965834482,12.053241768288808,17.242566043994316
173,data\1_SP-18.csv,70,11.391355252271676,8.991883569123548,5.798034930135011,5.204559449064496,10.965688729889084,14.234577645108516
174,data\1_SP-18.csv,80,8.7658521973087,6.517142595190262,3.02552883906568,3.1276197810755373,8.87611960090738,9.652567006884965
175,data\1_SP-18.csv,90,6.381586755011683,4.6267059923998515,1.47963200729406,2.0247272214014176,7.174463796974973,6.1492139826732455
176,data\1_SP-2.csv,20,7.251670001515235,4.035528221519683,1.768940800539829,6.821820576668616,2.489462690852944,12.351549624588728
177,data\1_SP-2.csv,30,6.394859481503299,3.334644752337675,1.892465100473458,6.494840643140869,2.1072941692190876,10.96773880812998
178,data\1_SP-2.csv,40,3.5150979054006277,1.030476235045081,0.5815497265283422,1.663475036364787,0.6352824649243111,6.831454185237476
179,data\1_SP-2.csv,50,2.162925795561472,0.7487742235720621,0.60621821951639,2.265307447579157,0.5469280850738427,4.812094374889455
180,data\1_SP-2.csv,60,1.5530356583388822,0.9400941478766079,0.9361513856359182,1.7749434198125569,0.7003402990927681,3.583445335172854
181,data\1_SP-2.csv,70,1.92956285477023,1.4854573892940488,1.542384094436538,2.159691403245862,1.191125682131134,3.256134742153506
182,data\1_SP-2.csv,80,1.7620101358819777,1.2590310165580139,0.6813073644257572,0.8336330267520252,1.015359141094122,2.6737570408162696
183,data\1_SP-2.csv,90,1.6752219272312727,1.1350087827397781,0.34980187958582465,0.6806276375598923,0.9247523614210207,2.359606626511095
184,data\1_SP-21.csv,20,42.12676455859104,38.90120020317653,37.22658345622938,34.309623185121495,41.718088947091374,74.12512857571585
185,data\1_SP-21.csv,30,33.64631516446726,25.29658461536414,18.696713585251256,15.38596010345607,30.561471155274536,53.322700065494814
186,data\1_SP-21.csv,40,20.49815346851365,13.283944333261775,8.03669888027985,4.568010914517468,20.510334180313954,29.75748908953392
187,data\1_SP-21.csv,50,16.49123687721858,10.449087808602119,5.519203486691371,1.9678403995436788,18.01891988306453,23.193971027143334
188,data\1_SP-21.csv,60,11.147105244244372,7.122962434632913,3.175364825607084,0.9753825221211637,14.617090212485024,15.185938487017665
189,data\1_SP-21.csv,70,7.597835933362693,5.075843395024002,1.996714419444735,0.41583681120581284,12.169507338053933,10.092257320529143
190,data\1_SP-21.csv,80,5.3839849473707835,3.963110348842146,1.7666792308581958,0.5075445221631049,10.439725199383387,6.52569514597667
191,data\1_SP-21.csv,90,4.047770694365581,3.216550040119223,1.2847238278822437,0.280779464110913,9.48544972279011,4.250756998837119
192,data\1_SP-23.csv,20,13.116024974500316,11.406415919730044,3.765506247399486,602.2836630636259,12.191707590091927,23.923046775405396
193,data\1_SP-23.csv,30,1.4112953886998152,0.8966962615790152,0.586859483898776,4.264442175046207,1.3311405338931415,2.678895051458994
194,data\1_SP-23.csv,40,0.503194490519577,1.246997021327698,1.893518739512354,3.8553845049761346,1.011465585089704,0.843393031303151
195,data\1_SP-23.csv,50,0.40177904473664083,1.3013884145405648,1.5432161449557766,1.6336735889893956,0.8320807816723674,0.46226549015170804
196,data\1_SP-23.csv,60,0.5378967117637476,0.983665873885793,0.9012969813708892,1.0010073396356354,0.8278345528564164,0.04731529797567191
197,data\1_SP-23.csv,70,0.4535655885338811,0.491565848929026,0.506019286829261,2.8099125224415813,1.1146050245412609,0.38557444858889767
198,data\1_SP-23.csv,80,0.5866926857702145,0.6017709913879816,0.9737862441170824,2.2594119811584648,1.460892813154599,0.7532984311519613
199,data\1_SP-23.csv,90,0.7117527371636706,0.6781729753686052,0.7357350650681013,0.6003291518938575,1.4891135231245114,0.5780290711276734
200,data\1_SP-24.csv,20,8.05208321507387,2.3775483088799723,0.8284886593422096,8.808339547201996,1.8054682221258365,12.256708834049562
201,data\1_SP-24.csv,30,4.754057585152563,1.8972328533869973,1.14346382775907,5.869420242870603,1.8346948063531192,6.763333674883654
202,data\1_SP-24.csv,40,3.7044220656872535,1.7774295583659288,1.600770661101458,5.438070310197358,1.487388512391807,5.0416487683838795
203,data\1_SP-24.csv,50,3.3814507465626766,2.2423339061827465,2.3743431468449008,5.156771184685447,0.7935985345444764,4.3162075572721506
204,data\1_SP-24.csv,60,2.9580616982955585,2.1138244336006364,1.936738251439519,3.911737118094992,0.7008325198972941,3.4983607937343777
205,data\1_SP-24.csv,70,2.053019642075373,1.3755461864353626,0.8259635802348708,1.9783233512007146,0.8315397306624637,2.133727284788961
206,data\1_SP-24.csv,80,0.925154070288001,0.4176762471904959,0.6829290262047738,0.48168303571445314,1.212222131618538,0.88306789224265
207,data\1_SP-24.csv,90,0.2631479686071642,0.2788168836221197,0.7768479019140757,0.669556803256403,1.498288156663679,0.4404124785364729
208,data\1_SP-27.csv,20,18.010609556858284,14.166985114707632,9.915165891602133,23.194832884944326,3.656394863473691,24.791256870866732
209,data\1_SP-27.csv,30,11.71354908610107,7.814156489676422,4.0848401856637375,13.855485533288206,2.9853163240886675,15.052317647589291
210,data\1_SP-27.csv,40,6.586066767787878,2.817013389041188,2.1778926038820683,5.688088848545767,4.590422827040999,7.541163703392897
211,data\1_SP-27.csv,50,3.3522604033921652,0.9786737289806023,3.494819318845624,2.6240804510051956,5.782538636584345,3.1411422304844905
212,data\1_SP-27.csv,60,1.3335052593426149,1.6158617009779779,2.930979658391043,1.965224999359457,6.167856737452781,0.5672384340131202
213,data\1_SP-27.csv,70,0.7395930072864558,1.742199982469519,2.0915616244173845,1.3781521788721838,6.043388875004583,0.35371090404748884
214,data\1_SP-27.csv,80,0.7129711553289985,1.9765310226371968,2.013838329825629,0.47991145803682334,6.111852384127282,0.8382121211179765
215,data\1_SP-27.csv,90,0.9512041354104962,1.8979783064509756,1.472466016784874,0.401096122731131,5.927546475798311,0.7494462753147673
216,data\1_SP-29.csv,20,58.11456968859943,54.20867884329497,39.61108050965662,72.7878344325526,47.176567041237234,79.76634044962634
217,data\1_SP-29.csv,30,42.261288398671475,37.208725595653966,19.481691221334845,55.65442483030424,33.51072091517887,59.396079737633926
218,data\1_SP-29.csv,40,30.26589551904199,25.41935167585668,8.824791212366963,39.27528850191659,24.03930285852246,43.74033540249678
219,data\1_SP-29.csv,50,22.045627271044555,17.410788234879284,3.834321033138491,28.384109882092144,17.082361204181726,32.80560900650579
220,data\1_SP-29.csv,60,12.58725003675586,8.625710340309544,0.7735301121039388,21.141175191142423,8.736739005847276,18.931538500183166
221,data\1_SP-29.csv,70,10.379782274387619,6.498289228635464,0.23684084569137315,17.61674109226546,6.623364989079403,14.046110736188723
222,data\1_SP-29.csv,80,9.388483891991743,5.731592744259239,0.2173229832348911,13.96446983079995,5.867370452446342,11.728430114724574
223,data\1_SP-29.csv,90,8.083201483420313,4.860118636658717,0.2637172037503133,11.355207422945249,4.998247642890794,9.505128470303845
224,data\1_SP-3.csv,20,2.7639666377013827,0.9505339793546425,1.0222593461911647,2.1271474494439353,1.889746668823346,5.625462848877987
225,data\1_SP-3.csv,30,1.7588046260832937,1.0346779977857292,0.6904824924392874,1.2190904976454986,1.0911784639097006,4.030450955314791
226,data\1_SP-3.csv,40,1.0122462164703974,0.3562513894553611,0.6380821442756859,0.9133417471727429,1.3412176434826666,2.873269221386522
227,data\1_SP-3.csv,50,0.875772435310304,0.597764287699386,0.5855513269386318,1.3473701648152487,0.8205124440118188,2.525210296311343
228,data\1_SP-3.csv,60,0.624543539369494,0.3742951816014111,0.2809099872726779,0.9231072880468726,0.9030900318430175,1.952983904963503
229,data\1_SP-3.csv,70,0.8332515554331394,0.6103887926575137,0.6178974084951281,1.11269087059214,0.7356865313899721,1.9233485531789825
230,data\1_SP-3.csv,80,0.9419012904046294,0.6892736180113511,0.5956241281720231,0.869350077634995,0.691929755323423,1.7907405530904157
231,data\1_SP-3.csv,90,1.0498331495160493,0.7424376198659032,0.522772797378362,0.6773245400829682,0.6197977029042671,1.6192326419223946
232,data\1_SP-31.csv,20,19.33714932197116,14.109524841969442,8.55126975160453,16.3240970149211,7.796826333425127,29.016294421755674
233,data\1_SP-31.csv,30,14.93768169180386,11.575579244717796,11.27046813038168,14.889609790138776,7.408257853548278,20.689607566333564
234,data\1_SP-31.csv,40,7.225161923150376,3.1546066039808682,10.586590635842512,7.222394920036293,3.5712235463176905,7.176477334351773
235,data\1_SP-31.csv,50,2.057140529710824,11.165257759960324,16.466760388295498,11.063404181253127,11.111250850191475,3.980293867555588
236,data\1_SP-31.csv,60,3.129236548164459,9.471968574955419,8.654601282011694,5.753283664275471,9.626092065807585,5.815114167759361
237,data\1_SP-31.csv,70,3.493324425986982,6.647691615846848,4.423725798205054,3.1139471987914424,7.358201799611277,5.618117386075426
238,data\1_SP-31.csv,80,3.7614567295505226,5.439641426488154,3.4017208594955126,3.3922462564020117,6.468800659704724,5.137075517588528
239,data\1_SP-31.csv,90,3.6850586112356307,4.403414502163275,2.464704301411955,2.1002848993271788,5.7198909032835195,4.1671588382944265
240,data\1_SP-4.csv,20,14.1800105801406,3.1497257010769313,6.116492058476434,2.3716109308472393,2.9888371479513616,18.033498964791022
241,data\1_SP-4.csv,30,8.814180972034736,2.3841507421739756,3.4281001378778577,1.0193269965751968,2.421031029465271,10.14433645479312
242,data\1_SP-4.csv,40,4.020069458092881,4.266027202872742,5.052898274886464,6.595912285842589,4.856902549700719,2.9447648482440627
243,data\1_SP-4.csv,50,1.5655809586933982,4.421824166333213,4.498503991265344,3.6168109381332747,4.737919350452426,2.0241453132273364
244,data\1_SP-4.csv,60,2.8255889328529777,4.318780481087872,3.812224438799903,3.638592480485815,4.348949039715682,4.9441194385123595
245,data\1_SP-4.csv,70,3.0098355177291696,3.5706976401314443,2.0422680463516194,1.8948403042494955,3.665877481781085,3.8922112538999727
246,data\1_SP-4.csv,80,3.3383481132125388,3.533116526395827,1.6461241498695636,1.7187934268197498,3.8936071711885947,3.0551044132898255
247,data\1_SP-4.csv,90,3.500274980525205,3.4634537756934947,1.3053983171550954,1.0905947127296258,4.12898100426122,2.4002749805252392
248,data\1_SP-5.csv,20,19.01982206124973,18.231684083564126,17.2031688944356,22.856744017504607,6.552090153390118,29.24820828829735
249,data\1_SP-5.csv,30,8.619850907506631,1.8732529579056163,3.8839833263646395,6.122867503531058,1.9684593608640961,12.881057035896788
250,data\1_SP-5.csv,40,4.373489591201087,2.4254200148711518,5.582645142047572,5.99503921049501,3.5165520880592576,6.185413783319461
251,data\1_SP-5.csv,50,0.7840007911603155,3.1212360913344726,3.341409408531209,3.3018738611819773,4.031962434343803,0.27035601893521743
252,data\1_SP-5.csv,60,1.385233520758738,2.9946337522798414,2.4356737478699,2.51980850430202,4.095636621635693,1.5725633701757147
253,data\1_SP-5.csv,70,1.3376003278793556,2.155169165017391,0.8191776089203991,1.217087121208194,3.848020332177294,1.014221305019987
254,data\1_SP-5.csv,80,1.5794214196008316,2.145853516105067,0.9055601727131877,1.6616812187056658,4.1534635206323545,0.8370904136937725
255,data\1_SP-5.csv,90,1.6476033879915875,1.9262754528654276,0.6184697506069872,0.9602577234857359,4.3428653785188365,0.5191583472790171
256,data\1_SP-6.csv,20,18.823368133620573,9.711298695408024,4.671217951931806,18.89361772643047,5.532272743878993,24.49568538525625
257,data\1_SP-6.csv,30,7.2850741787827795,3.40676523188954,7.403579031219248,13.020198301363921,4.910197270345021,5.4312582371888425
258,data\1_SP-6.csv,40,4.150725891586423,3.779152594657274,4.632370831812934,2.932826525485085,5.162388657496632,0.45840271174347436
259,data\1_SP-6.csv,50,3.590739524819434,5.876445324519404,6.4793926042065815,6.519352298532605,6.766107158344899,8.441776378973657
260,data\1_SP-6.csv,60,5.257258756772454,6.6405512761123,6.127938350147389,7.02026603377924,7.704340475747744,9.532189678105453
261,data\1_SP-6.csv,70,6.499622877299118,7.338520754512718,6.13253420808361,6.2149369211993335,8.734147830763076,9.192764904676551
262,data\1_SP-6.csv,80,7.197584388519787,7.16748519483013,4.84690165747437,4.571515896385614,9.240389511522254,7.989072293220033
263,data\1_SP-6.csv,90,7.258476142471198,6.391707237133926,3.199691472382279,2.5189317643384292,9.378416986074912,6.36436546810836
264,data\1_SP-8.csv,20,13.724402266628424,3.8474261858726027,3.8761389145379472,4.297387192543221,2.979953000441522,28.727756112879206
265,data\1_SP-8.csv,30,8.117162803997703,1.8192082930013656,3.1881100613455,10.859572755132064,3.763598263372951,17.496525503906014
266,data\1_SP-8.csv,40,5.601929975825574,3.1750076497104125,3.908802713266494,4.600704081525033,4.351429810828936,12.288857095097796
267,data\1_SP-8.csv,50,5.418106443167945,4.1632861639884515,5.009236061811986,6.812329827763838,4.8346123593513175,11.576585817379168
268,data\1_SP-8.csv,60,4.541530280936754,3.5537333439080747,3.1217704199084597,4.588534853343822,4.8770768338388235,8.296402009884787
269,data\1_SP-8.csv,70,5.02028811636518,3.9026228580560693,3.2060451766201425,3.7664338358837894,5.709616335803563,7.307266716541278
270,data\1_SP-8.csv,80,5.435344889150946,3.916965279400222,2.7451449694245005,3.2045994621080216,6.627286940187872,6.2159908585936705
271,data\1_SP-8.csv,90,5.48054191461318,3.437963134670824,1.7657518311792497,1.7600499561277778,7.513525270362268,4.889949188131595
1 File Data_usage RMSE_hyper_original RMSE_hyper_nonlinear RMSE_step Final_error_hyper_original Final_error_hyper_nonlinear Final_error_step
2 0 data\1_S-1.csv 20 23.478646116979654 16.776209296837532 11.120719833394293 31.147089838760067 16.776209296837532 34.39703383058222
3 1 data\1_S-1.csv 30 12.402243644854485 5.208861608476322 2.150195941283636 13.42602435195194 5.208861608476322 17.88176228477299
4 2 data\1_S-1.csv 40 5.5477225601078475 2.4340047901478026 6.124088322692104 3.137413028656972 2.4340047901478026 6.698331612401873
5 3 data\1_S-1.csv 50 1.4243573608600337 5.339485942822988 7.291387329162888 1.5491904788507092 5.339485942822988 0.18927190226409607
6 4 data\1_S-1.csv 60 1.2405425139403812 5.484226338578135 5.7050750283865845 2.4292610036214497 5.484226338578135 1.4831090032904086
7 5 data\1_S-1.csv 70 1.597066962397822 4.027720666840552 2.7608737957120946 1.0042867085237617 4.027720666840552 1.540451618948424
8 6 data\1_S-1.csv 80 1.5539368201809547 3.3570950843708673 1.8277216110401846 0.3671659497912856 3.3570950843708673 1.1246294275445763
9 7 data\1_S-1.csv 90 1.1605550014743073 2.5042477994964543 0.8365472478337495 0.3815598208090165 2.5042477994964543 0.5605550014742988
10 8 data\1_S-10.csv 20 2.250454268092718 11.945795822232032 14.022426652187274 5.458857525298658 12.78210944667846 4.480921480938093
11 9 data\1_S-10.csv 30 1.4798556806649208 4.5201471879813395 1.2820054079359062 5.56697174346722 6.187128156863005 2.9409475590047975
12 10 data\1_S-10.csv 40 2.5831593209425114 1.5068804246967553 3.9556125069100414 7.327682225114709 1.2159945876728537 4.603069473692216
13 11 data\1_S-10.csv 50 3.0493487660606946 2.5290835903126405 3.781342127791944 6.543763194275195 0.7580449556824689 4.96050056705603
14 12 data\1_S-10.csv 60 2.753018935138921 2.4773563031889623 2.4829685067950007 5.197657553387721 1.1114680943428539 4.144430467497713
15 13 data\1_S-10.csv 70 2.057161629717554 1.852262568800247 1.125746596630284 3.5981758084098927 0.7917721159345887 2.9539000368872053
16 14 data\1_S-10.csv 80 1.385275833572099 1.222635822549523 0.21141515162913316 3.0372816823669457 0.28624544571854166 2.055521208384789
17 15 data\1_S-10.csv 90 1.2289805279797732 1.1001404713990144 0.17079561302316265 2.659062579968389 0.22576196364864093 1.687906445950702
18 16 data\1_S-11.csv 20 12.780165484446645 3.543442987743452 3.826654330541223 14.142903035702759 2.8057093191787796 18.591421005556583
19 17 data\1_S-11.csv 30 8.950467372059691 1.8083726479927158 0.600058015048404 10.92937956217384 1.2372043888069384 13.038668567087655
20 18 data\1_S-11.csv 40 6.0781469397310275 2.0814044264045988 1.9762362900266666 8.545036423072245 1.6105013874823666 8.905430697186034
21 19 data\1_S-11.csv 50 4.354144249638527 1.830001873935883 1.5994546831172567 6.658170772673151 1.4688426083053616 6.377174516981569
22 20 data\1_S-11.csv 60 3.0600926275659055 1.5911267267597402 1.253477114943287 5.316149584849218 1.336850488399163 4.339127785422562
23 21 data\1_S-11.csv 70 2.0782232665915683 1.023377922742072 0.4250838856090123 3.7693273765738313 0.8323985798147107 2.8678089286949273
24 22 data\1_S-11.csv 80 1.3106083121407994 0.46948359525194167 0.24458020822699267 3.2221638079518704 0.29468631398794154 1.9290492102943517
25 23 data\1_S-11.csv 90 1.1328843800677029 0.4200675824984277 0.12988845884140596 2.8519660229689157 0.2547636891884459 1.574556969531173
26 24 data\1_S-12.csv 20 2.7120407627429746 7.298582927104371 8.599569444991946 13.542896407505745 2.6778432237681407 4.889581454963832
27 25 data\1_S-12.csv 30 5.402183151249969 7.687632014330983 7.420643449273505 12.39344963386265 3.7415741342788835 8.386482482784231
28 26 data\1_S-12.csv 40 4.394685384926156 4.845951876514215 2.4643841148224466 6.954026249999055 2.412851448737444 6.4929381725025905
29 27 data\1_S-12.csv 50 3.2605713395995304 3.1319161474217667 0.8446842192946161 4.935018097624205 1.4510820822297386 4.728667992653101
30 28 data\1_S-12.csv 60 1.9783184512590368 1.569473731965631 0.6435496596366582 2.850940115587415 0.5703161045481381 2.95931761635174
31 29 data\1_S-12.csv 70 1.0000004382811707 0.5560357418512717 0.8212550238314622 2.1698581422986623 0.38681115435021735 1.7765112770664189
32 30 data\1_S-12.csv 80 0.8241746816026769 0.45382185232957534 0.3656309038475283 1.8254973815355815 0.3919724859787349 1.4696145959291016
33 31 data\1_S-12.csv 90 0.7085626123177089 0.417602660005857 0.07822953821441234 1.4335822794754267 0.32528847438603103 1.199407747704015
34 32 data\1_S-15.csv 20 0.2880082260432656 0.31324495710969785 0.3234024531936505 0.4022129400876201 0.31324495710969785 0.5801711693735285
35 33 data\1_S-15.csv 30 0.2612327425554409 0.1982982487483713 0.13414140830370697 0.15485897379953692 0.1982982487483713 0.45587398459380846
36 34 data\1_S-15.csv 40 0.1627146650925451 0.0847291405415234 0.033866481436163935 0.038989961050724664 0.0847291405415234 0.26057510197224854
37 35 data\1_S-15.csv 50 0.09403647123965381 0.03947355449793594 0.010432214231313604 0.016236014905314802 0.03947355449793594 0.14077931124954113
38 36 data\1_S-15.csv 60 0.05952893520483399 0.023106062873209498 0.005335595378394103 0.005718866196795912 0.023106062873209498 0.08386450933302625
39 37 data\1_S-15.csv 70 0.04473399276446019 0.016377408145597953 0.003981572071803215 0.0022423032047758674 0.016377408145597953 0.06066449965583809
40 38 data\1_S-15.csv 80 0.033746284419315604 0.014448091335809161 0.006681360997480904 0.007188935630891185 0.014448091335809161 0.04113326606019707
41 39 data\1_S-15.csv 90 0.02766081220100747 0.013596987999911315 0.007021701057583198 0.006864032090390862 0.013596987999911315 0.028039740265827118
42 40 data\1_S-16.csv 20 3.3040962181845503 2.5459436259747408 1.45493861867461 3.3531886022017394 2.5459436259747408 5.830754051237456
43 41 data\1_S-16.csv 30 3.397577659982119 2.1593623899054246 3.4385208065435036 6.806972770490538 2.1593623899054246 5.463521952189097
44 42 data\1_S-16.csv 40 3.5615235188381624 3.0031596961493916 3.530913385578609 6.7713581454297 3.0031596961493916 5.321234213446772
45 43 data\1_S-16.csv 50 2.979305758737618 2.456347223799883 2.003799792080917 4.62235381428586 2.456347223799883 4.208604160138584
46 44 data\1_S-16.csv 60 2.440684687417658 1.9674064134436176 1.3030765444312726 3.7587013753882332 1.9674064134436176 3.219011843360569
47 45 data\1_S-16.csv 70 1.9611474785668164 1.5509606603565687 0.8011290107342396 2.4317880070651103 1.5509606603565687 2.378298589011777
48 46 data\1_S-16.csv 80 1.147210901886969 0.7794500638783542 0.25842333575239057 1.0220331261428133 0.7794500638783542 1.4548249995786477
49 47 data\1_S-16.csv 90 0.6658320594808093 0.3599471149325066 0.3460836953388925 1.153154586718134 0.3599471149325066 0.9885512420661939
50 48 data\1_S-17.csv 20 14.817149675077845 11.00820026665355 9.160227086888597 19.49554522452195 11.00820026665355 22.114584610703353
51 49 data\1_S-17.csv 30 12.619854078927927 9.134481442421977 6.9071576082667425 16.03629997348982 9.134481442421977 17.657859773028946
52 50 data\1_S-17.csv 40 9.602067756400896 6.47474795338568 4.084271910648953 11.477366749731411 6.47474795338568 12.643407243916172
53 51 data\1_S-17.csv 50 6.782687807338599 3.914529880205498 1.207594132519305 6.842442053294446 3.914529880205498 8.457968207762192
54 52 data\1_S-17.csv 60 4.4393395624054275 2.0008384382997764 0.7688263011902206 4.276987675473648 2.0008384382997764 5.234788630782006
55 53 data\1_S-17.csv 70 2.931857444605733 1.0695640076905621 0.9273110304857721 3.2225789084675727 1.0695640076905621 3.2388963393675
56 54 data\1_S-17.csv 80 1.630643658296253 0.3125213348966345 1.1612740930672463 1.8326739324209824 0.3125213348966345 1.8464644601669704
57 55 data\1_S-17.csv 90 0.9032383117232653 0.24827782525448813 0.9587919569314237 1.674370356936783 0.24827782525448813 1.184956388177838
58 56 data\1_S-18.csv 20 4.8569683354725655 8.370185056504068 9.972599263436887 14.865095422926293 8.370185056504068 9.978111512340448
59 57 data\1_S-18.csv 30 7.502879610626537 9.170910252757494 9.19044618685778 13.6454883261436 9.170910252757494 13.302444006063652
60 58 data\1_S-18.csv 40 7.138752761075896 7.328752844478417 5.329825897187873 9.095760769015405 7.328752844478417 11.980402617417937
61 59 data\1_S-18.csv 50 5.233986629512829 4.185885403593828 0.783413059416807 3.6322332834046427 4.185885403593828 8.773198466234518
62 60 data\1_S-18.csv 60 3.67241324585774 2.169070128892058 0.7783608535039951 2.154039188017579 2.169070128892058 6.401575843298858
63 61 data\1_S-18.csv 70 2.5424291135664294 1.1802477097783282 0.4923296701790672 2.064256197436636 1.1802477097783282 4.5863843876741015
64 62 data\1_S-18.csv 80 2.316459386629839 1.1667965600421817 0.4129961986646059 1.7712363628695194 1.1667965600421817 3.931515685511968
65 63 data\1_S-18.csv 90 2.2309174292325835 1.2202603294310326 0.6119224915467529 1.215885316632567 1.2202603294310326 3.3551102882782544
66 64 data\1_S-19.csv 20 0.4813921356094701 0.38645090597916665 0.262085380838314 0.38645090597916665 0.14662814292741366
67 65 data\1_S-19.csv 30 0.2542390778983757 0.4486975357849197 0.9538761866430289 1.4578288563061808 0.4486975357849197 0.44082650844485194
68 66 data\1_S-19.csv 40 0.31581380528892206 0.3508458151659684 0.3483818926223097 0.38722202897310515 0.3508458151659684 0.5728220719268533
69 67 data\1_S-19.csv 50 0.4289141972590556 0.47865360212276115 0.5717551474263084 0.17735833501852744 0.47865360212276115 0.732654069325152
70 68 data\1_S-19.csv 60 0.6124097428850761 0.6727217066022969 0.7994377009874323 0.5650083536577103 0.6727217066022969 0.9069841958082296
71 69 data\1_S-19.csv 70 0.5623432486393993 0.5988132191913642 0.5105750432737622 0.3048821664614563 0.5988132191913642 0.744300913392955
72 70 data\1_S-19.csv 80 0.4580512395915517 0.5006204677271572 0.32797151283517634 0.22446438982174222 0.5006204677271572 0.5387456623125226
73 71 data\1_S-19.csv 90 0.3623750170500113 0.42372832622671464 0.2209220631754878 0.18242844832152194 0.42372832622671464 0.3623750170500113
74 72 data\1_S-2.csv 20 29.13824269821142 32.97006600177633 32.21195457337266 50.98953962583674 32.97006600177633 75.5054893685952
75 73 data\1_S-2.csv 30 29.094378311540368 26.78893971941293 24.057354502241488 45.95952965698194 26.78893971941293 69.77267293076979
76 74 data\1_S-2.csv 40 25.668812328945442 19.737664954989953 16.573301668930714 24.389044284038413 19.737664954989953 52.38088891618217
77 75 data\1_S-2.csv 50 21.583732110692612 13.578484970142826 9.284277402492405 12.336281678713968 13.578484970142826 37.166154284409075
78 76 data\1_S-2.csv 60 16.62078573542056 8.641182434779754 4.371591913792901 6.562214890034458 8.641182434779754 25.272718668872173
79 77 data\1_S-2.csv 70 10.811437650017501 4.671426204672148 1.3020176782522703 3.462313585656565 4.671426204672148 14.045796578049647
80 78 data\1_S-2.csv 80 9.173065296379605 3.754546671085857 0.7442237783985166 2.5270190520652127 3.754546671085857 10.64978363276596
81 79 data\1_S-2.csv 90 7.478016107420814 3.0808772341682698 0.5970427746556197 2.4566348296251874 3.0808772341682698 6.8780161074208195
82 80 data\1_S-20.csv 20 1.5991320251442396 0.734274177067469 0.5024653897933992 0.734274177067469 1.6181966710915923
83 81 data\1_S-20.csv 30 0.983467706082507 0.5566263918424004 1.1599839311022724 0.6891888364909496 0.5566263918424004 0.6205457463884416
84 82 data\1_S-20.csv 40 1.0445947683198489 1.8102553204615202 1.7764261241719057 3.0507083248841558 1.8102553204615202 2.0625130717155606
85 83 data\1_S-20.csv 50 1.0135995303584442 1.2428489549759612 0.8261289496652552 1.3546541436513129 1.2428489549759612 1.8588171166887548
86 84 data\1_S-20.csv 60 0.9359575571420113 0.9239063949715502 0.6167255864523585 0.9803172858616156 0.9239063949715502 1.5791947067579333
87 85 data\1_S-20.csv 70 1.0160045814445942 0.9713676236655032 0.8095088685500043 0.9647285147730768 0.9713676236655032 1.4728692385142317
88 86 data\1_S-20.csv 80 0.9330057968496768 0.8398552977157308 0.6027524648118354 0.8579451894453256 0.8398552977157308 1.147925727916272
89 87 data\1_S-20.csv 90 0.7810454819952506 0.6916580785283166 0.4052801175930112 0.5899582590956429 0.6916580785283166 0.7810454819952506
90 88 data\1_S-3.csv 20 31.079801282684922 20.79725899625463 6.818060318938833 28.308551362298864 20.79725899625463 47.238716900050875
91 89 data\1_S-3.csv 30 15.753554144633085 2.6352848578842987 6.859721543987546 4.702100098681567 2.6352848578842987 23.36498322819596
92 90 data\1_S-3.csv 40 6.0485793575074664 7.374862524981409 9.794646700171079 5.6935020904941345 7.374862524981409 6.835073565304668
93 91 data\1_S-3.csv 50 2.094048920603935 8.202986587700892 8.159727175403006 6.144855383897656 8.202986587700892 0.270197824992394
94 92 data\1_S-3.csv 60 1.4543199299679703 7.237301240068834 5.981863502688744 5.584626897838916 7.237301240068834 2.1218242419079445
95 93 data\1_S-3.csv 70 2.19394289660755 5.393455869919254 3.609877616358329 3.771152629539646 5.393455869919254 2.6421432980650223
96 94 data\1_S-3.csv 80 2.4322158153771154 4.8844137991230685 2.9524536403368833 2.6133509468069507 4.8844137991230685 2.352481088106998
97 95 data\1_S-3.csv 90 2.734140059942362 4.359378633827035 2.227164224763243 2.404017139031467 4.359378633827035 1.5341400599423594
98 96 data\1_S-4.csv 20 28.378259539192584 20.76394535575388 14.033947286055122 33.956392919022214 20.76394535575388 45.99094608090661
99 97 data\1_S-4.csv 30 16.61106216131759 8.942811079170239 3.4524341187436187 18.710539650936383 8.942811079170239 26.84827159237942
100 98 data\1_S-4.csv 40 9.797519852171225 2.5496599587282107 3.319788316482909 8.412714329822519 2.5496599587282107 14.194926674696305
101 99 data\1_S-4.csv 50 6.125834599642608 2.6040335337737477 5.850573674531381 1.9179721973123014 2.6040335337737477 7.993250496636364
102 100 data\1_S-4.csv 60 2.8788592236974906 4.206983125971776 5.795766591760959 1.7072180407065176 4.206983125971776 3.461211024688268
103 101 data\1_S-4.csv 70 0.4085160425472198 4.062087348253181 3.7531585944730246 1.6008828051224104 4.062087348253181 0.6633379205306653
104 102 data\1_S-4.csv 80 0.47595142031207355 3.724576037953115 2.999485225439125 0.5935342876852995 3.724576037953115 0.5578013561442674
105 103 data\1_S-4.csv 90 0.4702196369976548 2.770238687192787 1.4789221203064358 0.09388708245413113 2.770238687192787 0.729780363002348
106 104 data\1_S-5.csv 20 1.967727423890477 1.3254354393668206 1.945810601215972 1.9607824925465678 1.3254354393668206 0.1874346159763789
107 105 data\1_S-5.csv 30 1.4382082353192773 1.919434236053275 2.533465805806511 2.023289939059952 1.919434236053275 2.9894571542230324
108 106 data\1_S-5.csv 40 2.7465167206481573 4.409602595386762 5.291501886071811 5.725165924900896 4.409602595386762 6.266108561419188
109 107 data\1_S-5.csv 50 3.461920761656759 4.381575529957983 4.275659286339894 5.075875198611303 4.381575529957983 6.925871218956949
110 108 data\1_S-5.csv 60 4.361846022920693 4.604849959229172 4.196889816830964 4.208858373774062 4.604849959229172 6.861029398211379
111 109 data\1_S-5.csv 70 4.3969327856562845 4.205632373475578 3.4012384137145903 3.2719092143242556 4.205632373475578 6.121369526288497
112 110 data\1_S-5.csv 80 4.096266723294103 3.499985586090912 2.3855823394470796 2.1966796537602513 3.499985586090912 4.9464799766905685
113 111 data\1_S-5.csv 90 3.4604082851893114 2.689997383766356 1.47402197284386 1.2253835699076183 2.689997383766356 3.58886013074747
114 112 data\1_S-6.csv 20 3.053759492348517 2.001309307753893 0.8290155196979421 4.399864757510363 2.001309307753893 4.949978925908944
115 113 data\1_S-6.csv 30 0.6616315454047025 2.8758400900404943 4.735312554782918 2.3907096778655346 2.8758400900404943 1.1719061933164738
116 114 data\1_S-6.csv 40 1.8154121853645282 3.2214327224410306 3.2778392243914536 2.5461929166560875 3.2214327224410306 3.0045898440710985
117 115 data\1_S-6.csv 50 1.296886856905884 1.4915193295518268 0.6728501717871729 0.639996196106986 1.4915193295518268 1.9737040590938761
118 116 data\1_S-6.csv 60 0.8015748472732784 0.696411033119271 0.26372552323457404 0.5934316617703056 0.696411033119271 1.0438148406506542
119 117 data\1_S-6.csv 70 0.7876144436121876 0.6730390296235668 0.3217870993721718 0.1265165575151855 0.6730390296235668 0.8848022965429507
120 118 data\1_S-6.csv 80 0.8779263334065708 0.7750307740182709 0.5374422060703334 0.4493235452909501 0.7750307740182709 0.8055827182868924
121 119 data\1_S-6.csv 90 0.7501681896633152 0.6416649676648516 0.3558228026883899 0.12849860415305325 0.6416649676648516 0.5189720146847918
122 120 data\1_S-7.csv 20 5.365254081514151 3.8657561591156813 3.8093740674211998 6.2385985725116875 3.8657561591156813 12.931787976643314
123 121 data\1_S-7.csv 30 6.020986058758559 6.135746944313514 6.748313062661424 7.534740868368928 6.135746944313514 12.642457532575591
124 122 data\1_S-7.csv 40 5.674619852269969 4.703357957475107 3.8463807465185167 5.468678771443814 4.703357957475107 10.682921494145674
125 123 data\1_S-7.csv 50 3.4690575924798996 1.8878183084882048 0.8755075833559937 1.6025113529316266 1.8878183084882048 6.0995707396998
126 124 data\1_S-7.csv 60 2.7451423754747624 1.4731986021963825 0.8469142936908258 1.2925956551006061 1.4731986021963825 4.257652913170311
127 125 data\1_S-7.csv 70 2.7072833040182207 1.5925145664383469 1.156536439526758 1.5625936995519176 1.5925145664383469 3.8279131225302976
128 126 data\1_S-7.csv 80 2.621881865553797 1.7290734621115118 1.3650423959522893 1.721165557371262 1.7290734621115118 3.000226554513077
129 127 data\1_S-7.csv 90 2.266894911924734 1.4570027185864196 0.9445565509743197 1.0957970213384967 1.4570027185864196 2.2733706960531137
130 128 data\1_S-8.csv 20 18.11867407113544 14.215247739318466 9.511025244297006 22.404300227967695 13.446664866431115 26.01883685539876
131 129 data\1_S-8.csv 30 14.514699952893631 11.335799950369877 8.947236678349666 17.58355261139789 10.86796392608233 18.834907128584675
132 130 data\1_S-8.csv 40 11.075185948305768 6.8509390887115895 2.6457376862208544 9.530043636696428 6.673867126195534 13.50020958026542
133 131 data\1_S-8.csv 50 7.186567380657684 2.8339403044579425 1.4744207009933934 3.85833262551545 2.7885364868377245 7.98665931754185
134 132 data\1_S-8.csv 60 4.170061258682651 0.9040062070909864 2.733241309408221 1.1686720201047711 0.9105324134896468 3.986163533267458
135 133 data\1_S-8.csv 70 1.5780417387192855 1.4050145672359917 2.4869013753578524 0.35952798393250346 1.4178734518905698 0.8413080660591419
136 134 data\1_S-8.csv 80 0.5058499106073733 1.6205084705479829 1.950904027163278 0.4184494053158285 1.6366433460233913 0.23664910840155073
137 135 data\1_S-8.csv 90 0.4578779578295943 1.6313760499123662 1.4543709314629694 0.2256783271406 1.6521997346239476 0.4691400149420417
138 136 data\1_S-9.csv 20 23.23466856539556 14.38965667065365 5.812478485735811 11.415193360584711 17.60095766072406 35.798616223799556
139 137 data\1_S-9.csv 30 8.740016212536279 1.254088481183067 5.286134059469931 6.8867355672344175 4.699099274275911 11.926173764268128
140 138 data\1_S-9.csv 40 0.7725497801920852 4.342346270472876 6.044221052095922 8.128363400745855 0.8423842661623222 0.2591634095472699
141 139 data\1_S-9.csv 50 1.604201044849245 4.046644394358106 3.936626436981537 6.002530432463326 0.828713418284349 2.384399117848659
142 140 data\1_S-9.csv 60 1.3390917223895678 2.428693627890554 1.2271797874647459 3.816309142062488 1.0597756937496738 1.7585285077495598
143 141 data\1_S-9.csv 70 1.2202180455836111 1.9103128992797382 0.771291803280165 3.0048787355486817 1.310797523750748 1.346145339351395
144 142 data\1_S-9.csv 80 0.5617299433168577 0.9928155840050683 0.4728782399995845 1.4040243056990842 1.8418478186652112 0.6723892700070877
145 143 data\1_S-9.csv 90 0.22486696052940594 0.5792833717765682 0.5607951645765684 1.3539869222261414 2.1243071866986516 0.4806282542646869
146 144 data\1_SP-11.csv 20 1.7081991927226081 7.2313561231667896 1.0953656139037249 6.18712689484869 3.5433619581079885 2.7577460356066013
147 145 data\1_SP-11.csv 30 1.5756064331383481 1.4508379762295698 4.667981912115056 10.672594578553554 1.617156571881448 2.3383819412964613
148 146 data\1_SP-11.csv 40 1.666416631660893 1.9147387544365118 2.7246884581594735 3.5102269392885606 2.0539228359031503 2.3988648053252746
149 147 data\1_SP-11.csv 50 2.292818865830556 3.0276355451630215 3.857923628067331 5.7946017504485265 3.032368564205978 3.384991365221879
150 148 data\1_SP-11.csv 60 1.889989812312286 1.7249795942495172 1.2640582684881747 2.526077644495358 2.0433210528715673 1.979183768159885
151 149 data\1_SP-11.csv 70 2.103608751730582 1.8058365765796776 1.2951201482171344 1.9073165276319612 2.238909008345376 1.5961519844577197
152 150 data\1_SP-11.csv 80 1.8788628904767846 1.162865729788941 0.31047591858649476 1.1848375699933602 2.0019114454225315 0.7574673332335351
153 151 data\1_SP-11.csv 90 1.6578045150943486 0.8013356838663631 0.08523995237079618 0.3893484790967483 1.835912955550954 0.38333311153473915
154 152 data\1_SP-13.csv 20 0.4372325497058458 3.6243420678089686 4.851065851031277 7.415206093573297 0.6251074747335184 1.7710273059890653
155 153 data\1_SP-13.csv 30 0.7131156843560439 1.182411372082287 0.8606939440943202 2.1000835574758305 0.49852265726353917 2.4215488717810274
156 154 data\1_SP-13.csv 40 0.4278189077600768 0.39601474936665476 0.4303011088176812 2.735854312131982 0.8957677532161553 1.6593554681574574
157 155 data\1_SP-13.csv 50 1.4339059010061033 1.9491290609659973 2.136544531646112 2.656249815428144 0.7047311863777824 3.555367659593287
158 156 data\1_SP-13.csv 60 0.39242710983822804 0.15258643592231405 0.8714892516916322 1.3278099872124942 0.5322267611739026 1.826726679179444
159 157 data\1_SP-13.csv 70 0.18072037145060008 0.2617744847181645 0.5737992763703951 1.261638455555825 0.691105669926377 1.538114979348677
160 158 data\1_SP-13.csv 80 0.17867732178011012 0.1735062337331057 0.20455691893679187 0.40809888582969184 0.698209101804319 1.4847208692700917
161 159 data\1_SP-13.csv 90 0.19491393115805777 0.12209966495242676 0.10135028752760396 0.4554548974773021 0.6823303798309936 1.457893307596379
162 160 data\1_SP-17.csv 20 18.507066346497727 18.605257986168017 18.699978439884738 8.520723473217428 9.226100175280822 27.98292250374635
163 161 data\1_SP-17.csv 30 5.320558014435307 4.776189146250437 16.926096406129528 31.302259975691005 4.6214332180141895 6.7712262129747955
164 162 data\1_SP-17.csv 40 1.7586801283380498 4.547990441524903 5.21303935131053 3.797922268658988 4.561169272178184 2.087240103886984
165 163 data\1_SP-17.csv 50 2.7919874072221913 3.499394713176624 3.424666858660793 3.6674731091011044 3.661841220811493 4.753699240913875
166 164 data\1_SP-17.csv 60 4.509512187046268 5.062010812243616 4.965508498242809 6.293231675366611 5.19153025332887 6.083450351519332
167 165 data\1_SP-17.csv 70 4.477434583027644 4.415713384649314 2.973290496836599 2.715851907697277 4.835842604836214 4.835569684490849
168 166 data\1_SP-17.csv 80 4.118355090968156 3.5969326524892806 1.60282498572747 1.6372084145126302 4.409162438716603 3.485338713566364
169 167 data\1_SP-17.csv 90 3.5226698829318543 2.7625898354405023 0.6674499662480333 0.9570607962268323 3.912308283959222 2.436228051133355
170 168 data\1_SP-18.csv 20 7.606253940268715 15.613827267689272 16.31429809958159 21.055177174811675 16.01873246119757 18.570240961687887
171 169 data\1_SP-18.csv 30 14.367568344429996 18.4759301869696 17.811077331371575 21.26918604052492 18.839682917325284 29.252580611697567
172 170 data\1_SP-18.csv 40 15.142173533690988 15.260101482485425 12.895880292773695 12.11525582622308 16.025220403227284 28.06859674552618
173 171 data\1_SP-18.csv 50 13.236830193943605 11.361940339119686 9.147532937341081 10.380721972228644 12.690863720611114 21.247994508968986
174 172 data\1_SP-18.csv 60 12.572109779868718 10.373045747898717 7.8403567771617455 7.475192965834482 12.053241768288808 17.242566043994316
175 173 data\1_SP-18.csv 70 11.391355252271676 8.991883569123548 5.798034930135011 5.204559449064496 10.965688729889084 14.234577645108516
176 174 data\1_SP-18.csv 80 8.7658521973087 6.517142595190262 3.02552883906568 3.1276197810755373 8.87611960090738 9.652567006884965
177 175 data\1_SP-18.csv 90 6.381586755011683 4.6267059923998515 1.47963200729406 2.0247272214014176 7.174463796974973 6.1492139826732455
178 176 data\1_SP-2.csv 20 7.251670001515235 4.035528221519683 1.768940800539829 6.821820576668616 2.489462690852944 12.351549624588728
179 177 data\1_SP-2.csv 30 6.394859481503299 3.334644752337675 1.892465100473458 6.494840643140869 2.1072941692190876 10.96773880812998
180 178 data\1_SP-2.csv 40 3.5150979054006277 1.030476235045081 0.5815497265283422 1.663475036364787 0.6352824649243111 6.831454185237476
181 179 data\1_SP-2.csv 50 2.162925795561472 0.7487742235720621 0.60621821951639 2.265307447579157 0.5469280850738427 4.812094374889455
182 180 data\1_SP-2.csv 60 1.5530356583388822 0.9400941478766079 0.9361513856359182 1.7749434198125569 0.7003402990927681 3.583445335172854
183 181 data\1_SP-2.csv 70 1.92956285477023 1.4854573892940488 1.542384094436538 2.159691403245862 1.191125682131134 3.256134742153506
184 182 data\1_SP-2.csv 80 1.7620101358819777 1.2590310165580139 0.6813073644257572 0.8336330267520252 1.015359141094122 2.6737570408162696
185 183 data\1_SP-2.csv 90 1.6752219272312727 1.1350087827397781 0.34980187958582465 0.6806276375598923 0.9247523614210207 2.359606626511095
186 184 data\1_SP-21.csv 20 42.12676455859104 38.90120020317653 37.22658345622938 34.309623185121495 41.718088947091374 74.12512857571585
187 185 data\1_SP-21.csv 30 33.64631516446726 25.29658461536414 18.696713585251256 15.38596010345607 30.561471155274536 53.322700065494814
188 186 data\1_SP-21.csv 40 20.49815346851365 13.283944333261775 8.03669888027985 4.568010914517468 20.510334180313954 29.75748908953392
189 187 data\1_SP-21.csv 50 16.49123687721858 10.449087808602119 5.519203486691371 1.9678403995436788 18.01891988306453 23.193971027143334
190 188 data\1_SP-21.csv 60 11.147105244244372 7.122962434632913 3.175364825607084 0.9753825221211637 14.617090212485024 15.185938487017665
191 189 data\1_SP-21.csv 70 7.597835933362693 5.075843395024002 1.996714419444735 0.41583681120581284 12.169507338053933 10.092257320529143
192 190 data\1_SP-21.csv 80 5.3839849473707835 3.963110348842146 1.7666792308581958 0.5075445221631049 10.439725199383387 6.52569514597667
193 191 data\1_SP-21.csv 90 4.047770694365581 3.216550040119223 1.2847238278822437 0.280779464110913 9.48544972279011 4.250756998837119
194 192 data\1_SP-23.csv 20 13.116024974500316 11.406415919730044 3.765506247399486 602.2836630636259 12.191707590091927 23.923046775405396
195 193 data\1_SP-23.csv 30 1.4112953886998152 0.8966962615790152 0.586859483898776 4.264442175046207 1.3311405338931415 2.678895051458994
196 194 data\1_SP-23.csv 40 0.503194490519577 1.246997021327698 1.893518739512354 3.8553845049761346 1.011465585089704 0.843393031303151
197 195 data\1_SP-23.csv 50 0.40177904473664083 1.3013884145405648 1.5432161449557766 1.6336735889893956 0.8320807816723674 0.46226549015170804
198 196 data\1_SP-23.csv 60 0.5378967117637476 0.983665873885793 0.9012969813708892 1.0010073396356354 0.8278345528564164 0.04731529797567191
199 197 data\1_SP-23.csv 70 0.4535655885338811 0.491565848929026 0.506019286829261 2.8099125224415813 1.1146050245412609 0.38557444858889767
200 198 data\1_SP-23.csv 80 0.5866926857702145 0.6017709913879816 0.9737862441170824 2.2594119811584648 1.460892813154599 0.7532984311519613
201 199 data\1_SP-23.csv 90 0.7117527371636706 0.6781729753686052 0.7357350650681013 0.6003291518938575 1.4891135231245114 0.5780290711276734
202 200 data\1_SP-24.csv 20 8.05208321507387 2.3775483088799723 0.8284886593422096 8.808339547201996 1.8054682221258365 12.256708834049562
203 201 data\1_SP-24.csv 30 4.754057585152563 1.8972328533869973 1.14346382775907 5.869420242870603 1.8346948063531192 6.763333674883654
204 202 data\1_SP-24.csv 40 3.7044220656872535 1.7774295583659288 1.600770661101458 5.438070310197358 1.487388512391807 5.0416487683838795
205 203 data\1_SP-24.csv 50 3.3814507465626766 2.2423339061827465 2.3743431468449008 5.156771184685447 0.7935985345444764 4.3162075572721506
206 204 data\1_SP-24.csv 60 2.9580616982955585 2.1138244336006364 1.936738251439519 3.911737118094992 0.7008325198972941 3.4983607937343777
207 205 data\1_SP-24.csv 70 2.053019642075373 1.3755461864353626 0.8259635802348708 1.9783233512007146 0.8315397306624637 2.133727284788961
208 206 data\1_SP-24.csv 80 0.925154070288001 0.4176762471904959 0.6829290262047738 0.48168303571445314 1.212222131618538 0.88306789224265
209 207 data\1_SP-24.csv 90 0.2631479686071642 0.2788168836221197 0.7768479019140757 0.669556803256403 1.498288156663679 0.4404124785364729
210 208 data\1_SP-27.csv 20 18.010609556858284 14.166985114707632 9.915165891602133 23.194832884944326 3.656394863473691 24.791256870866732
211 209 data\1_SP-27.csv 30 11.71354908610107 7.814156489676422 4.0848401856637375 13.855485533288206 2.9853163240886675 15.052317647589291
212 210 data\1_SP-27.csv 40 6.586066767787878 2.817013389041188 2.1778926038820683 5.688088848545767 4.590422827040999 7.541163703392897
213 211 data\1_SP-27.csv 50 3.3522604033921652 0.9786737289806023 3.494819318845624 2.6240804510051956 5.782538636584345 3.1411422304844905
214 212 data\1_SP-27.csv 60 1.3335052593426149 1.6158617009779779 2.930979658391043 1.965224999359457 6.167856737452781 0.5672384340131202
215 213 data\1_SP-27.csv 70 0.7395930072864558 1.742199982469519 2.0915616244173845 1.3781521788721838 6.043388875004583 0.35371090404748884
216 214 data\1_SP-27.csv 80 0.7129711553289985 1.9765310226371968 2.013838329825629 0.47991145803682334 6.111852384127282 0.8382121211179765
217 215 data\1_SP-27.csv 90 0.9512041354104962 1.8979783064509756 1.472466016784874 0.401096122731131 5.927546475798311 0.7494462753147673
218 216 data\1_SP-29.csv 20 58.11456968859943 54.20867884329497 39.61108050965662 72.7878344325526 47.176567041237234 79.76634044962634
219 217 data\1_SP-29.csv 30 42.261288398671475 37.208725595653966 19.481691221334845 55.65442483030424 33.51072091517887 59.396079737633926
220 218 data\1_SP-29.csv 40 30.26589551904199 25.41935167585668 8.824791212366963 39.27528850191659 24.03930285852246 43.74033540249678
221 219 data\1_SP-29.csv 50 22.045627271044555 17.410788234879284 3.834321033138491 28.384109882092144 17.082361204181726 32.80560900650579
222 220 data\1_SP-29.csv 60 12.58725003675586 8.625710340309544 0.7735301121039388 21.141175191142423 8.736739005847276 18.931538500183166
223 221 data\1_SP-29.csv 70 10.379782274387619 6.498289228635464 0.23684084569137315 17.61674109226546 6.623364989079403 14.046110736188723
224 222 data\1_SP-29.csv 80 9.388483891991743 5.731592744259239 0.2173229832348911 13.96446983079995 5.867370452446342 11.728430114724574
225 223 data\1_SP-29.csv 90 8.083201483420313 4.860118636658717 0.2637172037503133 11.355207422945249 4.998247642890794 9.505128470303845
226 224 data\1_SP-3.csv 20 2.7639666377013827 0.9505339793546425 1.0222593461911647 2.1271474494439353 1.889746668823346 5.625462848877987
227 225 data\1_SP-3.csv 30 1.7588046260832937 1.0346779977857292 0.6904824924392874 1.2190904976454986 1.0911784639097006 4.030450955314791
228 226 data\1_SP-3.csv 40 1.0122462164703974 0.3562513894553611 0.6380821442756859 0.9133417471727429 1.3412176434826666 2.873269221386522
229 227 data\1_SP-3.csv 50 0.875772435310304 0.597764287699386 0.5855513269386318 1.3473701648152487 0.8205124440118188 2.525210296311343
230 228 data\1_SP-3.csv 60 0.624543539369494 0.3742951816014111 0.2809099872726779 0.9231072880468726 0.9030900318430175 1.952983904963503
231 229 data\1_SP-3.csv 70 0.8332515554331394 0.6103887926575137 0.6178974084951281 1.11269087059214 0.7356865313899721 1.9233485531789825
232 230 data\1_SP-3.csv 80 0.9419012904046294 0.6892736180113511 0.5956241281720231 0.869350077634995 0.691929755323423 1.7907405530904157
233 231 data\1_SP-3.csv 90 1.0498331495160493 0.7424376198659032 0.522772797378362 0.6773245400829682 0.6197977029042671 1.6192326419223946
234 232 data\1_SP-31.csv 20 19.33714932197116 14.109524841969442 8.55126975160453 16.3240970149211 7.796826333425127 29.016294421755674
235 233 data\1_SP-31.csv 30 14.93768169180386 11.575579244717796 11.27046813038168 14.889609790138776 7.408257853548278 20.689607566333564
236 234 data\1_SP-31.csv 40 7.225161923150376 3.1546066039808682 10.586590635842512 7.222394920036293 3.5712235463176905 7.176477334351773
237 235 data\1_SP-31.csv 50 2.057140529710824 11.165257759960324 16.466760388295498 11.063404181253127 11.111250850191475 3.980293867555588
238 236 data\1_SP-31.csv 60 3.129236548164459 9.471968574955419 8.654601282011694 5.753283664275471 9.626092065807585 5.815114167759361
239 237 data\1_SP-31.csv 70 3.493324425986982 6.647691615846848 4.423725798205054 3.1139471987914424 7.358201799611277 5.618117386075426
240 238 data\1_SP-31.csv 80 3.7614567295505226 5.439641426488154 3.4017208594955126 3.3922462564020117 6.468800659704724 5.137075517588528
241 239 data\1_SP-31.csv 90 3.6850586112356307 4.403414502163275 2.464704301411955 2.1002848993271788 5.7198909032835195 4.1671588382944265
242 240 data\1_SP-4.csv 20 14.1800105801406 3.1497257010769313 6.116492058476434 2.3716109308472393 2.9888371479513616 18.033498964791022
243 241 data\1_SP-4.csv 30 8.814180972034736 2.3841507421739756 3.4281001378778577 1.0193269965751968 2.421031029465271 10.14433645479312
244 242 data\1_SP-4.csv 40 4.020069458092881 4.266027202872742 5.052898274886464 6.595912285842589 4.856902549700719 2.9447648482440627
245 243 data\1_SP-4.csv 50 1.5655809586933982 4.421824166333213 4.498503991265344 3.6168109381332747 4.737919350452426 2.0241453132273364
246 244 data\1_SP-4.csv 60 2.8255889328529777 4.318780481087872 3.812224438799903 3.638592480485815 4.348949039715682 4.9441194385123595
247 245 data\1_SP-4.csv 70 3.0098355177291696 3.5706976401314443 2.0422680463516194 1.8948403042494955 3.665877481781085 3.8922112538999727
248 246 data\1_SP-4.csv 80 3.3383481132125388 3.533116526395827 1.6461241498695636 1.7187934268197498 3.8936071711885947 3.0551044132898255
249 247 data\1_SP-4.csv 90 3.500274980525205 3.4634537756934947 1.3053983171550954 1.0905947127296258 4.12898100426122 2.4002749805252392
250 248 data\1_SP-5.csv 20 19.01982206124973 18.231684083564126 17.2031688944356 22.856744017504607 6.552090153390118 29.24820828829735
251 249 data\1_SP-5.csv 30 8.619850907506631 1.8732529579056163 3.8839833263646395 6.122867503531058 1.9684593608640961 12.881057035896788
252 250 data\1_SP-5.csv 40 4.373489591201087 2.4254200148711518 5.582645142047572 5.99503921049501 3.5165520880592576 6.185413783319461
253 251 data\1_SP-5.csv 50 0.7840007911603155 3.1212360913344726 3.341409408531209 3.3018738611819773 4.031962434343803 0.27035601893521743
254 252 data\1_SP-5.csv 60 1.385233520758738 2.9946337522798414 2.4356737478699 2.51980850430202 4.095636621635693 1.5725633701757147
255 253 data\1_SP-5.csv 70 1.3376003278793556 2.155169165017391 0.8191776089203991 1.217087121208194 3.848020332177294 1.014221305019987
256 254 data\1_SP-5.csv 80 1.5794214196008316 2.145853516105067 0.9055601727131877 1.6616812187056658 4.1534635206323545 0.8370904136937725
257 255 data\1_SP-5.csv 90 1.6476033879915875 1.9262754528654276 0.6184697506069872 0.9602577234857359 4.3428653785188365 0.5191583472790171
258 256 data\1_SP-6.csv 20 18.823368133620573 9.711298695408024 4.671217951931806 18.89361772643047 5.532272743878993 24.49568538525625
259 257 data\1_SP-6.csv 30 7.2850741787827795 3.40676523188954 7.403579031219248 13.020198301363921 4.910197270345021 5.4312582371888425
260 258 data\1_SP-6.csv 40 4.150725891586423 3.779152594657274 4.632370831812934 2.932826525485085 5.162388657496632 0.45840271174347436
261 259 data\1_SP-6.csv 50 3.590739524819434 5.876445324519404 6.4793926042065815 6.519352298532605 6.766107158344899 8.441776378973657
262 260 data\1_SP-6.csv 60 5.257258756772454 6.6405512761123 6.127938350147389 7.02026603377924 7.704340475747744 9.532189678105453
263 261 data\1_SP-6.csv 70 6.499622877299118 7.338520754512718 6.13253420808361 6.2149369211993335 8.734147830763076 9.192764904676551
264 262 data\1_SP-6.csv 80 7.197584388519787 7.16748519483013 4.84690165747437 4.571515896385614 9.240389511522254 7.989072293220033
265 263 data\1_SP-6.csv 90 7.258476142471198 6.391707237133926 3.199691472382279 2.5189317643384292 9.378416986074912 6.36436546810836
266 264 data\1_SP-8.csv 20 13.724402266628424 3.8474261858726027 3.8761389145379472 4.297387192543221 2.979953000441522 28.727756112879206
267 265 data\1_SP-8.csv 30 8.117162803997703 1.8192082930013656 3.1881100613455 10.859572755132064 3.763598263372951 17.496525503906014
268 266 data\1_SP-8.csv 40 5.601929975825574 3.1750076497104125 3.908802713266494 4.600704081525033 4.351429810828936 12.288857095097796
269 267 data\1_SP-8.csv 50 5.418106443167945 4.1632861639884515 5.009236061811986 6.812329827763838 4.8346123593513175 11.576585817379168
270 268 data\1_SP-8.csv 60 4.541530280936754 3.5537333439080747 3.1217704199084597 4.588534853343822 4.8770768338388235 8.296402009884787
271 269 data\1_SP-8.csv 70 5.02028811636518 3.9026228580560693 3.2060451766201425 3.7664338358837894 5.709616335803563 7.307266716541278
272 270 data\1_SP-8.csv 80 5.435344889150946 3.916965279400222 2.7451449694245005 3.2045994621080216 6.627286940187872 6.2159908585936705
273 271 data\1_SP-8.csv 90 5.48054191461318 3.437963134670824 1.7657518311792497 1.7600499561277778 7.513525270362268 4.889949188131595

273
error_overall.csv Normal file
View File

@ -0,0 +1,273 @@
,File,Data_usage,RMSE_hyper_original,RMSE_hyper_nonlinear,Final_error_hyper_original,Final_error_hyper_nonlinear
0,data\1_S-1.csv,20,23.478646116979654,16.776209296837532,31.147089838760067,16.776209296837532
1,data\1_S-1.csv,30,12.402243644854485,5.208861608476322,13.42602435195194,5.208861608476322
2,data\1_S-1.csv,40,5.5477225601078475,2.4340047901478026,3.137413028656972,2.4340047901478026
3,data\1_S-1.csv,50,1.4243573608600337,5.339485942822988,1.5491904788507092,5.339485942822988
4,data\1_S-1.csv,60,1.2405425139403812,5.484226338578135,2.4292610036214497,5.484226338578135
5,data\1_S-1.csv,70,1.597066962397822,4.027720666840552,1.0042867085237617,4.027720666840552
6,data\1_S-1.csv,80,1.5539368201809547,3.3570950843708673,0.3671659497912856,3.3570950843708673
7,data\1_S-1.csv,90,1.1605550014743073,2.5042477994964543,0.3815598208090165,2.5042477994964543
8,data\1_S-10.csv,20,2.250454268092718,11.945795822232032,5.458857525298658,12.78210944667846
9,data\1_S-10.csv,30,1.4798556806649208,4.5201471879813395,5.56697174346722,6.187128156863005
10,data\1_S-10.csv,40,2.5831593209425114,1.5068804246967553,7.327682225114709,1.2159945876728537
11,data\1_S-10.csv,50,3.0493487660606946,2.5290835903126405,6.543763194275195,0.7580449556824689
12,data\1_S-10.csv,60,2.753018935138921,2.4773563031889623,5.197657553387721,1.1114680943428539
13,data\1_S-10.csv,70,2.057161629717554,1.852262568800247,3.5981758084098927,0.7917721159345887
14,data\1_S-10.csv,80,1.385275833572099,1.222635822549523,3.0372816823669457,0.28624544571854166
15,data\1_S-10.csv,90,1.2289805279797732,1.1001404713990144,2.659062579968389,0.22576196364864093
16,data\1_S-11.csv,20,12.780165484446645,3.543442987743452,14.142903035702759,2.8057093191787796
17,data\1_S-11.csv,30,8.950467372059691,1.8083726479927158,10.92937956217384,1.2372043888069384
18,data\1_S-11.csv,40,6.0781469397310275,2.0814044264045988,8.545036423072245,1.6105013874823666
19,data\1_S-11.csv,50,4.354144249638527,1.830001873935883,6.658170772673151,1.4688426083053616
20,data\1_S-11.csv,60,3.0600926275659055,1.5911267267597402,5.316149584849218,1.336850488399163
21,data\1_S-11.csv,70,2.0782232665915683,1.023377922742072,3.7693273765738313,0.8323985798147107
22,data\1_S-11.csv,80,1.3106083121407994,0.46948359525194167,3.2221638079518704,0.29468631398794154
23,data\1_S-11.csv,90,1.1328843800677029,0.4200675824984277,2.8519660229689157,0.2547636891884459
24,data\1_S-12.csv,20,2.7120407627429746,7.298582927104371,13.542896407505745,2.6778432237681407
25,data\1_S-12.csv,30,5.402183151249969,7.687632014330983,12.39344963386265,3.7415741342788835
26,data\1_S-12.csv,40,4.394685384926156,4.845951876514215,6.954026249999055,2.412851448737444
27,data\1_S-12.csv,50,3.2605713395995304,3.1319161474217667,4.935018097624205,1.4510820822297386
28,data\1_S-12.csv,60,1.9783184512590368,1.569473731965631,2.850940115587415,0.5703161045481381
29,data\1_S-12.csv,70,1.0000004382811707,0.5560357418512717,2.1698581422986623,0.38681115435021735
30,data\1_S-12.csv,80,0.8241746816026769,0.45382185232957534,1.8254973815355815,0.3919724859787349
31,data\1_S-12.csv,90,0.7085626123177089,0.417602660005857,1.4335822794754267,0.32528847438603103
32,data\1_S-15.csv,20,0.2880082260432656,0.31324495710969785,0.4022129400876201,0.31324495710969785
33,data\1_S-15.csv,30,0.2612327425554409,0.1982982487483713,0.15485897379953692,0.1982982487483713
34,data\1_S-15.csv,40,0.1627146650925451,0.0847291405415234,0.038989961050724664,0.0847291405415234
35,data\1_S-15.csv,50,0.09403647123965381,0.03947355449793594,0.016236014905314802,0.03947355449793594
36,data\1_S-15.csv,60,0.05952893520483399,0.023106062873209498,0.005718866196795912,0.023106062873209498
37,data\1_S-15.csv,70,0.04473399276446019,0.016377408145597953,0.0022423032047758674,0.016377408145597953
38,data\1_S-15.csv,80,0.033746284419315604,0.014448091335809161,0.007188935630891185,0.014448091335809161
39,data\1_S-15.csv,90,0.02766081220100747,0.013596987999911315,0.006864032090390862,0.013596987999911315
40,data\1_S-16.csv,20,3.3040962181845503,2.5459436259747408,3.3531886022017394,2.5459436259747408
41,data\1_S-16.csv,30,3.397577659982119,2.1593623899054246,6.806972770490538,2.1593623899054246
42,data\1_S-16.csv,40,3.5615235188381624,3.0031596961493916,6.7713581454297,3.0031596961493916
43,data\1_S-16.csv,50,2.979305758737618,2.456347223799883,4.62235381428586,2.456347223799883
44,data\1_S-16.csv,60,2.440684687417658,1.9674064134436176,3.7587013753882332,1.9674064134436176
45,data\1_S-16.csv,70,1.9611474785668164,1.5509606603565687,2.4317880070651103,1.5509606603565687
46,data\1_S-16.csv,80,1.147210901886969,0.7794500638783542,1.0220331261428133,0.7794500638783542
47,data\1_S-16.csv,90,0.6658320594808093,0.3599471149325066,1.153154586718134,0.3599471149325066
48,data\1_S-17.csv,20,14.817149675077845,11.00820026665355,19.49554522452195,11.00820026665355
49,data\1_S-17.csv,30,12.619854078927927,9.134481442421977,16.03629997348982,9.134481442421977
50,data\1_S-17.csv,40,9.602067756400896,6.47474795338568,11.477366749731411,6.47474795338568
51,data\1_S-17.csv,50,6.782687807338599,3.914529880205498,6.842442053294446,3.914529880205498
52,data\1_S-17.csv,60,4.4393395624054275,2.0008384382997764,4.276987675473648,2.0008384382997764
53,data\1_S-17.csv,70,2.931857444605733,1.0695640076905621,3.2225789084675727,1.0695640076905621
54,data\1_S-17.csv,80,1.630643658296253,0.3125213348966345,1.8326739324209824,0.3125213348966345
55,data\1_S-17.csv,90,0.9032383117232653,0.24827782525448813,1.674370356936783,0.24827782525448813
56,data\1_S-18.csv,20,4.8569683354725655,8.370185056504068,14.865095422926293,8.370185056504068
57,data\1_S-18.csv,30,7.502879610626537,9.170910252757494,13.6454883261436,9.170910252757494
58,data\1_S-18.csv,40,7.138752761075896,7.328752844478417,9.095760769015405,7.328752844478417
59,data\1_S-18.csv,50,5.233986629512829,4.185885403593828,3.6322332834046427,4.185885403593828
60,data\1_S-18.csv,60,3.67241324585774,2.169070128892058,2.154039188017579,2.169070128892058
61,data\1_S-18.csv,70,2.5424291135664294,1.1802477097783282,2.064256197436636,1.1802477097783282
62,data\1_S-18.csv,80,2.316459386629839,1.1667965600421817,1.7712363628695194,1.1667965600421817
63,data\1_S-18.csv,90,2.2309174292325835,1.2202603294310326,1.215885316632567,1.2202603294310326
64,data\1_S-19.csv,20,0.4813921356094701,0.38645090597916665,,0.38645090597916665
65,data\1_S-19.csv,30,0.2542390778983757,0.4486975357849197,1.4578288563061808,0.4486975357849197
66,data\1_S-19.csv,40,0.31581380528892206,0.3508458151659684,0.38722202897310515,0.3508458151659684
67,data\1_S-19.csv,50,0.4289141972590556,0.47865360212276115,0.17735833501852744,0.47865360212276115
68,data\1_S-19.csv,60,0.6124097428850761,0.6727217066022969,0.5650083536577103,0.6727217066022969
69,data\1_S-19.csv,70,0.5623432486393993,0.5988132191913642,0.3048821664614563,0.5988132191913642
70,data\1_S-19.csv,80,0.4580512395915517,0.5006204677271572,0.22446438982174222,0.5006204677271572
71,data\1_S-19.csv,90,0.3623750170500113,0.42372832622671464,0.18242844832152194,0.42372832622671464
72,data\1_S-2.csv,20,29.13824269821142,32.97006600177633,50.98953962583674,32.97006600177633
73,data\1_S-2.csv,30,29.094378311540368,26.78893971941293,45.95952965698194,26.78893971941293
74,data\1_S-2.csv,40,25.668812328945442,19.737664954989953,24.389044284038413,19.737664954989953
75,data\1_S-2.csv,50,21.583732110692612,13.578484970142826,12.336281678713968,13.578484970142826
76,data\1_S-2.csv,60,16.62078573542056,8.641182434779754,6.562214890034458,8.641182434779754
77,data\1_S-2.csv,70,10.811437650017501,4.671426204672148,3.462313585656565,4.671426204672148
78,data\1_S-2.csv,80,9.173065296379605,3.754546671085857,2.5270190520652127,3.754546671085857
79,data\1_S-2.csv,90,7.478016107420814,3.0808772341682698,2.4566348296251874,3.0808772341682698
80,data\1_S-20.csv,20,1.5991320251442396,0.734274177067469,,0.734274177067469
81,data\1_S-20.csv,30,0.983467706082507,0.5566263918424004,0.6891888364909496,0.5566263918424004
82,data\1_S-20.csv,40,1.0445947683198489,1.8102553204615202,3.0507083248841558,1.8102553204615202
83,data\1_S-20.csv,50,1.0135995303584442,1.2428489549759612,1.3546541436513129,1.2428489549759612
84,data\1_S-20.csv,60,0.9359575571420113,0.9239063949715502,0.9803172858616156,0.9239063949715502
85,data\1_S-20.csv,70,1.0160045814445942,0.9713676236655032,0.9647285147730768,0.9713676236655032
86,data\1_S-20.csv,80,0.9330057968496768,0.8398552977157308,0.8579451894453256,0.8398552977157308
87,data\1_S-20.csv,90,0.7810454819952506,0.6916580785283166,0.5899582590956429,0.6916580785283166
88,data\1_S-3.csv,20,31.079801282684922,20.79725899625463,28.308551362298864,20.79725899625463
89,data\1_S-3.csv,30,15.753554144633085,2.6352848578842987,4.702100098681567,2.6352848578842987
90,data\1_S-3.csv,40,6.0485793575074664,7.374862524981409,5.6935020904941345,7.374862524981409
91,data\1_S-3.csv,50,2.094048920603935,8.202986587700892,6.144855383897656,8.202986587700892
92,data\1_S-3.csv,60,1.4543199299679703,7.237301240068834,5.584626897838916,7.237301240068834
93,data\1_S-3.csv,70,2.19394289660755,5.393455869919254,3.771152629539646,5.393455869919254
94,data\1_S-3.csv,80,2.4322158153771154,4.8844137991230685,2.6133509468069507,4.8844137991230685
95,data\1_S-3.csv,90,2.734140059942362,4.359378633827035,2.404017139031467,4.359378633827035
96,data\1_S-4.csv,20,28.378259539192584,20.76394535575388,33.956392919022214,20.76394535575388
97,data\1_S-4.csv,30,16.61106216131759,8.942811079170239,18.710539650936383,8.942811079170239
98,data\1_S-4.csv,40,9.797519852171225,2.5496599587282107,8.412714329822519,2.5496599587282107
99,data\1_S-4.csv,50,6.125834599642608,2.6040335337737477,1.9179721973123014,2.6040335337737477
100,data\1_S-4.csv,60,2.8788592236974906,4.206983125971776,1.7072180407065176,4.206983125971776
101,data\1_S-4.csv,70,0.4085160425472198,4.062087348253181,1.6008828051224104,4.062087348253181
102,data\1_S-4.csv,80,0.47595142031207355,3.724576037953115,0.5935342876852995,3.724576037953115
103,data\1_S-4.csv,90,0.4702196369976548,2.770238687192787,0.09388708245413113,2.770238687192787
104,data\1_S-5.csv,20,1.967727423890477,1.3254354393668206,1.9607824925465678,1.3254354393668206
105,data\1_S-5.csv,30,1.4382082353192773,1.919434236053275,2.023289939059952,1.919434236053275
106,data\1_S-5.csv,40,2.7465167206481573,4.409602595386762,5.725165924900896,4.409602595386762
107,data\1_S-5.csv,50,3.461920761656759,4.381575529957983,5.075875198611303,4.381575529957983
108,data\1_S-5.csv,60,4.361846022920693,4.604849959229172,4.208858373774062,4.604849959229172
109,data\1_S-5.csv,70,4.3969327856562845,4.205632373475578,3.2719092143242556,4.205632373475578
110,data\1_S-5.csv,80,4.096266723294103,3.499985586090912,2.1966796537602513,3.499985586090912
111,data\1_S-5.csv,90,3.4604082851893114,2.689997383766356,1.2253835699076183,2.689997383766356
112,data\1_S-6.csv,20,3.053759492348517,2.001309307753893,4.399864757510363,2.001309307753893
113,data\1_S-6.csv,30,0.6616315454047025,2.8758400900404943,2.3907096778655346,2.8758400900404943
114,data\1_S-6.csv,40,1.8154121853645282,3.2214327224410306,2.5461929166560875,3.2214327224410306
115,data\1_S-6.csv,50,1.296886856905884,1.4915193295518268,0.639996196106986,1.4915193295518268
116,data\1_S-6.csv,60,0.8015748472732784,0.696411033119271,0.5934316617703056,0.696411033119271
117,data\1_S-6.csv,70,0.7876144436121876,0.6730390296235668,0.1265165575151855,0.6730390296235668
118,data\1_S-6.csv,80,0.8779263334065708,0.7750307740182709,0.4493235452909501,0.7750307740182709
119,data\1_S-6.csv,90,0.7501681896633152,0.6416649676648516,0.12849860415305325,0.6416649676648516
120,data\1_S-7.csv,20,5.365254081514151,3.8657561591156813,6.2385985725116875,3.8657561591156813
121,data\1_S-7.csv,30,6.020986058758559,6.135746944313514,7.534740868368928,6.135746944313514
122,data\1_S-7.csv,40,5.674619852269969,4.703357957475107,5.468678771443814,4.703357957475107
123,data\1_S-7.csv,50,3.4690575924798996,1.8878183084882048,1.6025113529316266,1.8878183084882048
124,data\1_S-7.csv,60,2.7451423754747624,1.4731986021963825,1.2925956551006061,1.4731986021963825
125,data\1_S-7.csv,70,2.7072833040182207,1.5925145664383469,1.5625936995519176,1.5925145664383469
126,data\1_S-7.csv,80,2.621881865553797,1.7290734621115118,1.721165557371262,1.7290734621115118
127,data\1_S-7.csv,90,2.266894911924734,1.4570027185864196,1.0957970213384967,1.4570027185864196
128,data\1_S-8.csv,20,18.11867407113544,14.215247739318466,22.404300227967695,13.446664866431115
129,data\1_S-8.csv,30,14.514699952893631,11.335799950369877,17.58355261139789,10.86796392608233
130,data\1_S-8.csv,40,11.075185948305768,6.8509390887115895,9.530043636696428,6.673867126195534
131,data\1_S-8.csv,50,7.186567380657684,2.8339403044579425,3.85833262551545,2.7885364868377245
132,data\1_S-8.csv,60,4.170061258682651,0.9040062070909864,1.1686720201047711,0.9105324134896468
133,data\1_S-8.csv,70,1.5780417387192855,1.4050145672359917,0.35952798393250346,1.4178734518905698
134,data\1_S-8.csv,80,0.5058499106073733,1.6205084705479829,0.4184494053158285,1.6366433460233913
135,data\1_S-8.csv,90,0.4578779578295943,1.6313760499123662,0.2256783271406,1.6521997346239476
136,data\1_S-9.csv,20,23.23466856539556,14.38965667065365,11.415193360584711,17.60095766072406
137,data\1_S-9.csv,30,8.740016212536279,1.254088481183067,6.8867355672344175,4.699099274275911
138,data\1_S-9.csv,40,0.7725497801920852,4.342346270472876,8.128363400745855,0.8423842661623222
139,data\1_S-9.csv,50,1.604201044849245,4.046644394358106,6.002530432463326,0.828713418284349
140,data\1_S-9.csv,60,1.3390917223895678,2.428693627890554,3.816309142062488,1.0597756937496738
141,data\1_S-9.csv,70,1.2202180455836111,1.9103128992797382,3.0048787355486817,1.310797523750748
142,data\1_S-9.csv,80,0.5617299433168577,0.9928155840050683,1.4040243056990842,1.8418478186652112
143,data\1_S-9.csv,90,0.22486696052940594,0.5792833717765682,1.3539869222261414,2.1243071866986516
144,data\1_SP-11.csv,20,1.7081991927226081,7.2313561231667896,6.18712689484869,3.5433619581079885
145,data\1_SP-11.csv,30,1.5756064331383481,1.4508379762295698,10.672594578553554,1.617156571881448
146,data\1_SP-11.csv,40,1.666416631660893,1.9147387544365118,3.5102269392885606,2.0539228359031503
147,data\1_SP-11.csv,50,2.292818865830556,3.0276355451630215,5.7946017504485265,3.032368564205978
148,data\1_SP-11.csv,60,1.889989812312286,1.7249795942495172,2.526077644495358,2.0433210528715673
149,data\1_SP-11.csv,70,2.103608751730582,1.8058365765796776,1.9073165276319612,2.238909008345376
150,data\1_SP-11.csv,80,1.8788628904767846,1.162865729788941,1.1848375699933602,2.0019114454225315
151,data\1_SP-11.csv,90,1.6578045150943486,0.8013356838663631,0.3893484790967483,1.835912955550954
152,data\1_SP-13.csv,20,0.4372325497058458,3.6243420678089686,7.415206093573297,0.6251074747335184
153,data\1_SP-13.csv,30,0.7131156843560439,1.182411372082287,2.1000835574758305,0.49852265726353917
154,data\1_SP-13.csv,40,0.4278189077600768,0.39601474936665476,2.735854312131982,0.8957677532161553
155,data\1_SP-13.csv,50,1.4339059010061033,1.9491290609659973,2.656249815428144,0.7047311863777824
156,data\1_SP-13.csv,60,0.39242710983822804,0.15258643592231405,1.3278099872124942,0.5322267611739026
157,data\1_SP-13.csv,70,0.18072037145060008,0.2617744847181645,1.261638455555825,0.691105669926377
158,data\1_SP-13.csv,80,0.17867732178011012,0.1735062337331057,0.40809888582969184,0.698209101804319
159,data\1_SP-13.csv,90,0.19491393115805777,0.12209966495242676,0.4554548974773021,0.6823303798309936
160,data\1_SP-17.csv,20,18.507066346497727,18.605257986168017,8.520723473217428,9.226100175280822
161,data\1_SP-17.csv,30,5.320558014435307,4.776189146250437,31.302259975691005,4.6214332180141895
162,data\1_SP-17.csv,40,1.7586801283380498,4.547990441524903,3.797922268658988,4.561169272178184
163,data\1_SP-17.csv,50,2.7919874072221913,3.499394713176624,3.6674731091011044,3.661841220811493
164,data\1_SP-17.csv,60,4.509512187046268,5.062010812243616,6.293231675366611,5.19153025332887
165,data\1_SP-17.csv,70,4.477434583027644,4.415713384649314,2.715851907697277,4.835842604836214
166,data\1_SP-17.csv,80,4.118355090968156,3.5969326524892806,1.6372084145126302,4.409162438716603
167,data\1_SP-17.csv,90,3.5226698829318543,2.7625898354405023,0.9570607962268323,3.912308283959222
168,data\1_SP-18.csv,20,7.606253940268715,15.613827267689272,21.055177174811675,16.01873246119757
169,data\1_SP-18.csv,30,14.367568344429996,18.4759301869696,21.26918604052492,18.839682917325284
170,data\1_SP-18.csv,40,15.142173533690988,15.260101482485425,12.11525582622308,16.025220403227284
171,data\1_SP-18.csv,50,13.236830193943605,11.361940339119686,10.380721972228644,12.690863720611114
172,data\1_SP-18.csv,60,12.572109779868718,10.373045747898717,7.475192965834482,12.053241768288808
173,data\1_SP-18.csv,70,11.391355252271676,8.991883569123548,5.204559449064496,10.965688729889084
174,data\1_SP-18.csv,80,8.7658521973087,6.517142595190262,3.1276197810755373,8.87611960090738
175,data\1_SP-18.csv,90,6.381586755011683,4.6267059923998515,2.0247272214014176,7.174463796974973
176,data\1_SP-2.csv,20,7.251670001515235,4.035528221519683,6.821820576668616,2.489462690852944
177,data\1_SP-2.csv,30,6.394859481503299,3.334644752337675,6.494840643140869,2.1072941692190876
178,data\1_SP-2.csv,40,3.5150979054006277,1.030476235045081,1.663475036364787,0.6352824649243111
179,data\1_SP-2.csv,50,2.162925795561472,0.7487742235720621,2.265307447579157,0.5469280850738427
180,data\1_SP-2.csv,60,1.5530356583388822,0.9400941478766079,1.7749434198125569,0.7003402990927681
181,data\1_SP-2.csv,70,1.92956285477023,1.4854573892940488,2.159691403245862,1.191125682131134
182,data\1_SP-2.csv,80,1.7620101358819777,1.2590310165580139,0.8336330267520252,1.015359141094122
183,data\1_SP-2.csv,90,1.6752219272312727,1.1350087827397781,0.6806276375598923,0.9247523614210207
184,data\1_SP-21.csv,20,42.12676455859104,38.90120020317653,34.309623185121495,41.718088947091374
185,data\1_SP-21.csv,30,33.64631516446726,25.29658461536414,15.38596010345607,30.561471155274536
186,data\1_SP-21.csv,40,20.49815346851365,13.283944333261775,4.568010914517468,20.510334180313954
187,data\1_SP-21.csv,50,16.49123687721858,10.449087808602119,1.9678403995436788,18.01891988306453
188,data\1_SP-21.csv,60,11.147105244244372,7.122962434632913,0.9753825221211637,14.617090212485024
189,data\1_SP-21.csv,70,7.597835933362693,5.075843395024002,0.41583681120581284,12.169507338053933
190,data\1_SP-21.csv,80,5.3839849473707835,3.963110348842146,0.5075445221631049,10.439725199383387
191,data\1_SP-21.csv,90,4.047770694365581,3.216550040119223,0.280779464110913,9.48544972279011
192,data\1_SP-23.csv,20,13.116024974500316,11.406415919730044,602.2836630636259,12.191707590091927
193,data\1_SP-23.csv,30,1.4112953886998152,0.8966962615790152,4.264442175046207,1.3311405338931415
194,data\1_SP-23.csv,40,0.503194490519577,1.246997021327698,3.8553845049761346,1.011465585089704
195,data\1_SP-23.csv,50,0.40177904473664083,1.3013884145405648,1.6336735889893956,0.8320807816723674
196,data\1_SP-23.csv,60,0.5378967117637476,0.983665873885793,1.0010073396356354,0.8278345528564164
197,data\1_SP-23.csv,70,0.4535655885338811,0.491565848929026,2.8099125224415813,1.1146050245412609
198,data\1_SP-23.csv,80,0.5866926857702145,0.6017709913879816,2.2594119811584648,1.460892813154599
199,data\1_SP-23.csv,90,0.7117527371636706,0.6781729753686052,0.6003291518938575,1.4891135231245114
200,data\1_SP-24.csv,20,8.05208321507387,2.3775483088799723,8.808339547201996,1.8054682221258365
201,data\1_SP-24.csv,30,4.754057585152563,1.8972328533869973,5.869420242870603,1.8346948063531192
202,data\1_SP-24.csv,40,3.7044220656872535,1.7774295583659288,5.438070310197358,1.487388512391807
203,data\1_SP-24.csv,50,3.3814507465626766,2.2423339061827465,5.156771184685447,0.7935985345444764
204,data\1_SP-24.csv,60,2.9580616982955585,2.1138244336006364,3.911737118094992,0.7008325198972941
205,data\1_SP-24.csv,70,2.053019642075373,1.3755461864353626,1.9783233512007146,0.8315397306624637
206,data\1_SP-24.csv,80,0.925154070288001,0.4176762471904959,0.48168303571445314,1.212222131618538
207,data\1_SP-24.csv,90,0.2631479686071642,0.2788168836221197,0.669556803256403,1.498288156663679
208,data\1_SP-27.csv,20,18.010609556858284,14.166985114707632,23.194832884944326,3.656394863473691
209,data\1_SP-27.csv,30,11.71354908610107,7.814156489676422,13.855485533288206,2.9853163240886675
210,data\1_SP-27.csv,40,6.586066767787878,2.817013389041188,5.688088848545767,4.590422827040999
211,data\1_SP-27.csv,50,3.3522604033921652,0.9786737289806023,2.6240804510051956,5.782538636584345
212,data\1_SP-27.csv,60,1.3335052593426149,1.6158617009779779,1.965224999359457,6.167856737452781
213,data\1_SP-27.csv,70,0.7395930072864558,1.742199982469519,1.3781521788721838,6.043388875004583
214,data\1_SP-27.csv,80,0.7129711553289985,1.9765310226371968,0.47991145803682334,6.111852384127282
215,data\1_SP-27.csv,90,0.9512041354104962,1.8979783064509756,0.401096122731131,5.927546475798311
216,data\1_SP-29.csv,20,58.11456968859943,54.20867884329497,72.7878344325526,47.176567041237234
217,data\1_SP-29.csv,30,42.261288398671475,37.208725595653966,55.65442483030424,33.51072091517887
218,data\1_SP-29.csv,40,30.26589551904199,25.41935167585668,39.27528850191659,24.03930285852246
219,data\1_SP-29.csv,50,22.045627271044555,17.410788234879284,28.384109882092144,17.082361204181726
220,data\1_SP-29.csv,60,12.58725003675586,8.625710340309544,21.141175191142423,8.736739005847276
221,data\1_SP-29.csv,70,10.379782274387619,6.498289228635464,17.61674109226546,6.623364989079403
222,data\1_SP-29.csv,80,9.388483891991743,5.731592744259239,13.96446983079995,5.867370452446342
223,data\1_SP-29.csv,90,8.083201483420313,4.860118636658717,11.355207422945249,4.998247642890794
224,data\1_SP-3.csv,20,2.7639666377013827,0.9505339793546425,2.1271474494439353,1.889746668823346
225,data\1_SP-3.csv,30,1.7588046260832937,1.0346779977857292,1.2190904976454986,1.0911784639097006
226,data\1_SP-3.csv,40,1.0122462164703974,0.3562513894553611,0.9133417471727429,1.3412176434826666
227,data\1_SP-3.csv,50,0.875772435310304,0.597764287699386,1.3473701648152487,0.8205124440118188
228,data\1_SP-3.csv,60,0.624543539369494,0.3742951816014111,0.9231072880468726,0.9030900318430175
229,data\1_SP-3.csv,70,0.8332515554331394,0.6103887926575137,1.11269087059214,0.7356865313899721
230,data\1_SP-3.csv,80,0.9419012904046294,0.6892736180113511,0.869350077634995,0.691929755323423
231,data\1_SP-3.csv,90,1.0498331495160493,0.7424376198659032,0.6773245400829682,0.6197977029042671
232,data\1_SP-31.csv,20,19.33714932197116,14.109524841969442,16.3240970149211,7.796826333425127
233,data\1_SP-31.csv,30,14.93768169180386,11.575579244717796,14.889609790138776,7.408257853548278
234,data\1_SP-31.csv,40,7.225161923150376,3.1546066039808682,7.222394920036293,3.5712235463176905
235,data\1_SP-31.csv,50,2.057140529710824,11.165257759960324,11.063404181253127,11.111250850191475
236,data\1_SP-31.csv,60,3.129236548164459,9.471968574955419,5.753283664275471,9.626092065807585
237,data\1_SP-31.csv,70,3.493324425986982,6.647691615846848,3.1139471987914424,7.358201799611277
238,data\1_SP-31.csv,80,3.7614567295505226,5.439641426488154,3.3922462564020117,6.468800659704724
239,data\1_SP-31.csv,90,3.6850586112356307,4.403414502163275,2.1002848993271788,5.7198909032835195
240,data\1_SP-4.csv,20,14.1800105801406,3.1497257010769313,2.3716109308472393,2.9888371479513616
241,data\1_SP-4.csv,30,8.814180972034736,2.3841507421739756,1.0193269965751968,2.421031029465271
242,data\1_SP-4.csv,40,4.020069458092881,4.266027202872742,6.595912285842589,4.856902549700719
243,data\1_SP-4.csv,50,1.5655809586933982,4.421824166333213,3.6168109381332747,4.737919350452426
244,data\1_SP-4.csv,60,2.8255889328529777,4.318780481087872,3.638592480485815,4.348949039715682
245,data\1_SP-4.csv,70,3.0098355177291696,3.5706976401314443,1.8948403042494955,3.665877481781085
246,data\1_SP-4.csv,80,3.3383481132125388,3.533116526395827,1.7187934268197498,3.8936071711885947
247,data\1_SP-4.csv,90,3.500274980525205,3.4634537756934947,1.0905947127296258,4.12898100426122
248,data\1_SP-5.csv,20,19.01982206124973,18.231684083564126,22.856744017504607,6.552090153390118
249,data\1_SP-5.csv,30,8.619850907506631,1.8732529579056163,6.122867503531058,1.9684593608640961
250,data\1_SP-5.csv,40,4.373489591201087,2.4254200148711518,5.99503921049501,3.5165520880592576
251,data\1_SP-5.csv,50,0.7840007911603155,3.1212360913344726,3.3018738611819773,4.031962434343803
252,data\1_SP-5.csv,60,1.385233520758738,2.9946337522798414,2.51980850430202,4.095636621635693
253,data\1_SP-5.csv,70,1.3376003278793556,2.155169165017391,1.217087121208194,3.848020332177294
254,data\1_SP-5.csv,80,1.5794214196008316,2.145853516105067,1.6616812187056658,4.1534635206323545
255,data\1_SP-5.csv,90,1.6476033879915875,1.9262754528654276,0.9602577234857359,4.3428653785188365
256,data\1_SP-6.csv,20,18.823368133620573,9.711298695408024,18.89361772643047,5.532272743878993
257,data\1_SP-6.csv,30,7.2850741787827795,3.40676523188954,13.020198301363921,4.910197270345021
258,data\1_SP-6.csv,40,4.150725891586423,3.779152594657274,2.932826525485085,5.162388657496632
259,data\1_SP-6.csv,50,3.590739524819434,5.876445324519404,6.519352298532605,6.766107158344899
260,data\1_SP-6.csv,60,5.257258756772454,6.6405512761123,7.02026603377924,7.704340475747744
261,data\1_SP-6.csv,70,6.499622877299118,7.338520754512718,6.2149369211993335,8.734147830763076
262,data\1_SP-6.csv,80,7.197584388519787,7.16748519483013,4.571515896385614,9.240389511522254
263,data\1_SP-6.csv,90,7.258476142471198,6.391707237133926,2.5189317643384292,9.378416986074912
264,data\1_SP-8.csv,20,13.724402266628424,3.8474261858726027,4.297387192543221,2.979953000441522
265,data\1_SP-8.csv,30,8.117162803997703,1.8192082930013656,10.859572755132064,3.763598263372951
266,data\1_SP-8.csv,40,5.601929975825574,3.1750076497104125,4.600704081525033,4.351429810828936
267,data\1_SP-8.csv,50,5.418106443167945,4.1632861639884515,6.812329827763838,4.8346123593513175
268,data\1_SP-8.csv,60,4.541530280936754,3.5537333439080747,4.588534853343822,4.8770768338388235
269,data\1_SP-8.csv,70,5.02028811636518,3.9026228580560693,3.7664338358837894,5.709616335803563
270,data\1_SP-8.csv,80,5.435344889150946,3.916965279400222,3.2045994621080216,6.627286940187872
271,data\1_SP-8.csv,90,5.48054191461318,3.437963134670824,1.7600499561277778,7.513525270362268
1 File Data_usage RMSE_hyper_original RMSE_hyper_nonlinear Final_error_hyper_original Final_error_hyper_nonlinear
2 0 data\1_S-1.csv 20 23.478646116979654 16.776209296837532 31.147089838760067 16.776209296837532
3 1 data\1_S-1.csv 30 12.402243644854485 5.208861608476322 13.42602435195194 5.208861608476322
4 2 data\1_S-1.csv 40 5.5477225601078475 2.4340047901478026 3.137413028656972 2.4340047901478026
5 3 data\1_S-1.csv 50 1.4243573608600337 5.339485942822988 1.5491904788507092 5.339485942822988
6 4 data\1_S-1.csv 60 1.2405425139403812 5.484226338578135 2.4292610036214497 5.484226338578135
7 5 data\1_S-1.csv 70 1.597066962397822 4.027720666840552 1.0042867085237617 4.027720666840552
8 6 data\1_S-1.csv 80 1.5539368201809547 3.3570950843708673 0.3671659497912856 3.3570950843708673
9 7 data\1_S-1.csv 90 1.1605550014743073 2.5042477994964543 0.3815598208090165 2.5042477994964543
10 8 data\1_S-10.csv 20 2.250454268092718 11.945795822232032 5.458857525298658 12.78210944667846
11 9 data\1_S-10.csv 30 1.4798556806649208 4.5201471879813395 5.56697174346722 6.187128156863005
12 10 data\1_S-10.csv 40 2.5831593209425114 1.5068804246967553 7.327682225114709 1.2159945876728537
13 11 data\1_S-10.csv 50 3.0493487660606946 2.5290835903126405 6.543763194275195 0.7580449556824689
14 12 data\1_S-10.csv 60 2.753018935138921 2.4773563031889623 5.197657553387721 1.1114680943428539
15 13 data\1_S-10.csv 70 2.057161629717554 1.852262568800247 3.5981758084098927 0.7917721159345887
16 14 data\1_S-10.csv 80 1.385275833572099 1.222635822549523 3.0372816823669457 0.28624544571854166
17 15 data\1_S-10.csv 90 1.2289805279797732 1.1001404713990144 2.659062579968389 0.22576196364864093
18 16 data\1_S-11.csv 20 12.780165484446645 3.543442987743452 14.142903035702759 2.8057093191787796
19 17 data\1_S-11.csv 30 8.950467372059691 1.8083726479927158 10.92937956217384 1.2372043888069384
20 18 data\1_S-11.csv 40 6.0781469397310275 2.0814044264045988 8.545036423072245 1.6105013874823666
21 19 data\1_S-11.csv 50 4.354144249638527 1.830001873935883 6.658170772673151 1.4688426083053616
22 20 data\1_S-11.csv 60 3.0600926275659055 1.5911267267597402 5.316149584849218 1.336850488399163
23 21 data\1_S-11.csv 70 2.0782232665915683 1.023377922742072 3.7693273765738313 0.8323985798147107
24 22 data\1_S-11.csv 80 1.3106083121407994 0.46948359525194167 3.2221638079518704 0.29468631398794154
25 23 data\1_S-11.csv 90 1.1328843800677029 0.4200675824984277 2.8519660229689157 0.2547636891884459
26 24 data\1_S-12.csv 20 2.7120407627429746 7.298582927104371 13.542896407505745 2.6778432237681407
27 25 data\1_S-12.csv 30 5.402183151249969 7.687632014330983 12.39344963386265 3.7415741342788835
28 26 data\1_S-12.csv 40 4.394685384926156 4.845951876514215 6.954026249999055 2.412851448737444
29 27 data\1_S-12.csv 50 3.2605713395995304 3.1319161474217667 4.935018097624205 1.4510820822297386
30 28 data\1_S-12.csv 60 1.9783184512590368 1.569473731965631 2.850940115587415 0.5703161045481381
31 29 data\1_S-12.csv 70 1.0000004382811707 0.5560357418512717 2.1698581422986623 0.38681115435021735
32 30 data\1_S-12.csv 80 0.8241746816026769 0.45382185232957534 1.8254973815355815 0.3919724859787349
33 31 data\1_S-12.csv 90 0.7085626123177089 0.417602660005857 1.4335822794754267 0.32528847438603103
34 32 data\1_S-15.csv 20 0.2880082260432656 0.31324495710969785 0.4022129400876201 0.31324495710969785
35 33 data\1_S-15.csv 30 0.2612327425554409 0.1982982487483713 0.15485897379953692 0.1982982487483713
36 34 data\1_S-15.csv 40 0.1627146650925451 0.0847291405415234 0.038989961050724664 0.0847291405415234
37 35 data\1_S-15.csv 50 0.09403647123965381 0.03947355449793594 0.016236014905314802 0.03947355449793594
38 36 data\1_S-15.csv 60 0.05952893520483399 0.023106062873209498 0.005718866196795912 0.023106062873209498
39 37 data\1_S-15.csv 70 0.04473399276446019 0.016377408145597953 0.0022423032047758674 0.016377408145597953
40 38 data\1_S-15.csv 80 0.033746284419315604 0.014448091335809161 0.007188935630891185 0.014448091335809161
41 39 data\1_S-15.csv 90 0.02766081220100747 0.013596987999911315 0.006864032090390862 0.013596987999911315
42 40 data\1_S-16.csv 20 3.3040962181845503 2.5459436259747408 3.3531886022017394 2.5459436259747408
43 41 data\1_S-16.csv 30 3.397577659982119 2.1593623899054246 6.806972770490538 2.1593623899054246
44 42 data\1_S-16.csv 40 3.5615235188381624 3.0031596961493916 6.7713581454297 3.0031596961493916
45 43 data\1_S-16.csv 50 2.979305758737618 2.456347223799883 4.62235381428586 2.456347223799883
46 44 data\1_S-16.csv 60 2.440684687417658 1.9674064134436176 3.7587013753882332 1.9674064134436176
47 45 data\1_S-16.csv 70 1.9611474785668164 1.5509606603565687 2.4317880070651103 1.5509606603565687
48 46 data\1_S-16.csv 80 1.147210901886969 0.7794500638783542 1.0220331261428133 0.7794500638783542
49 47 data\1_S-16.csv 90 0.6658320594808093 0.3599471149325066 1.153154586718134 0.3599471149325066
50 48 data\1_S-17.csv 20 14.817149675077845 11.00820026665355 19.49554522452195 11.00820026665355
51 49 data\1_S-17.csv 30 12.619854078927927 9.134481442421977 16.03629997348982 9.134481442421977
52 50 data\1_S-17.csv 40 9.602067756400896 6.47474795338568 11.477366749731411 6.47474795338568
53 51 data\1_S-17.csv 50 6.782687807338599 3.914529880205498 6.842442053294446 3.914529880205498
54 52 data\1_S-17.csv 60 4.4393395624054275 2.0008384382997764 4.276987675473648 2.0008384382997764
55 53 data\1_S-17.csv 70 2.931857444605733 1.0695640076905621 3.2225789084675727 1.0695640076905621
56 54 data\1_S-17.csv 80 1.630643658296253 0.3125213348966345 1.8326739324209824 0.3125213348966345
57 55 data\1_S-17.csv 90 0.9032383117232653 0.24827782525448813 1.674370356936783 0.24827782525448813
58 56 data\1_S-18.csv 20 4.8569683354725655 8.370185056504068 14.865095422926293 8.370185056504068
59 57 data\1_S-18.csv 30 7.502879610626537 9.170910252757494 13.6454883261436 9.170910252757494
60 58 data\1_S-18.csv 40 7.138752761075896 7.328752844478417 9.095760769015405 7.328752844478417
61 59 data\1_S-18.csv 50 5.233986629512829 4.185885403593828 3.6322332834046427 4.185885403593828
62 60 data\1_S-18.csv 60 3.67241324585774 2.169070128892058 2.154039188017579 2.169070128892058
63 61 data\1_S-18.csv 70 2.5424291135664294 1.1802477097783282 2.064256197436636 1.1802477097783282
64 62 data\1_S-18.csv 80 2.316459386629839 1.1667965600421817 1.7712363628695194 1.1667965600421817
65 63 data\1_S-18.csv 90 2.2309174292325835 1.2202603294310326 1.215885316632567 1.2202603294310326
66 64 data\1_S-19.csv 20 0.4813921356094701 0.38645090597916665 0.38645090597916665
67 65 data\1_S-19.csv 30 0.2542390778983757 0.4486975357849197 1.4578288563061808 0.4486975357849197
68 66 data\1_S-19.csv 40 0.31581380528892206 0.3508458151659684 0.38722202897310515 0.3508458151659684
69 67 data\1_S-19.csv 50 0.4289141972590556 0.47865360212276115 0.17735833501852744 0.47865360212276115
70 68 data\1_S-19.csv 60 0.6124097428850761 0.6727217066022969 0.5650083536577103 0.6727217066022969
71 69 data\1_S-19.csv 70 0.5623432486393993 0.5988132191913642 0.3048821664614563 0.5988132191913642
72 70 data\1_S-19.csv 80 0.4580512395915517 0.5006204677271572 0.22446438982174222 0.5006204677271572
73 71 data\1_S-19.csv 90 0.3623750170500113 0.42372832622671464 0.18242844832152194 0.42372832622671464
74 72 data\1_S-2.csv 20 29.13824269821142 32.97006600177633 50.98953962583674 32.97006600177633
75 73 data\1_S-2.csv 30 29.094378311540368 26.78893971941293 45.95952965698194 26.78893971941293
76 74 data\1_S-2.csv 40 25.668812328945442 19.737664954989953 24.389044284038413 19.737664954989953
77 75 data\1_S-2.csv 50 21.583732110692612 13.578484970142826 12.336281678713968 13.578484970142826
78 76 data\1_S-2.csv 60 16.62078573542056 8.641182434779754 6.562214890034458 8.641182434779754
79 77 data\1_S-2.csv 70 10.811437650017501 4.671426204672148 3.462313585656565 4.671426204672148
80 78 data\1_S-2.csv 80 9.173065296379605 3.754546671085857 2.5270190520652127 3.754546671085857
81 79 data\1_S-2.csv 90 7.478016107420814 3.0808772341682698 2.4566348296251874 3.0808772341682698
82 80 data\1_S-20.csv 20 1.5991320251442396 0.734274177067469 0.734274177067469
83 81 data\1_S-20.csv 30 0.983467706082507 0.5566263918424004 0.6891888364909496 0.5566263918424004
84 82 data\1_S-20.csv 40 1.0445947683198489 1.8102553204615202 3.0507083248841558 1.8102553204615202
85 83 data\1_S-20.csv 50 1.0135995303584442 1.2428489549759612 1.3546541436513129 1.2428489549759612
86 84 data\1_S-20.csv 60 0.9359575571420113 0.9239063949715502 0.9803172858616156 0.9239063949715502
87 85 data\1_S-20.csv 70 1.0160045814445942 0.9713676236655032 0.9647285147730768 0.9713676236655032
88 86 data\1_S-20.csv 80 0.9330057968496768 0.8398552977157308 0.8579451894453256 0.8398552977157308
89 87 data\1_S-20.csv 90 0.7810454819952506 0.6916580785283166 0.5899582590956429 0.6916580785283166
90 88 data\1_S-3.csv 20 31.079801282684922 20.79725899625463 28.308551362298864 20.79725899625463
91 89 data\1_S-3.csv 30 15.753554144633085 2.6352848578842987 4.702100098681567 2.6352848578842987
92 90 data\1_S-3.csv 40 6.0485793575074664 7.374862524981409 5.6935020904941345 7.374862524981409
93 91 data\1_S-3.csv 50 2.094048920603935 8.202986587700892 6.144855383897656 8.202986587700892
94 92 data\1_S-3.csv 60 1.4543199299679703 7.237301240068834 5.584626897838916 7.237301240068834
95 93 data\1_S-3.csv 70 2.19394289660755 5.393455869919254 3.771152629539646 5.393455869919254
96 94 data\1_S-3.csv 80 2.4322158153771154 4.8844137991230685 2.6133509468069507 4.8844137991230685
97 95 data\1_S-3.csv 90 2.734140059942362 4.359378633827035 2.404017139031467 4.359378633827035
98 96 data\1_S-4.csv 20 28.378259539192584 20.76394535575388 33.956392919022214 20.76394535575388
99 97 data\1_S-4.csv 30 16.61106216131759 8.942811079170239 18.710539650936383 8.942811079170239
100 98 data\1_S-4.csv 40 9.797519852171225 2.5496599587282107 8.412714329822519 2.5496599587282107
101 99 data\1_S-4.csv 50 6.125834599642608 2.6040335337737477 1.9179721973123014 2.6040335337737477
102 100 data\1_S-4.csv 60 2.8788592236974906 4.206983125971776 1.7072180407065176 4.206983125971776
103 101 data\1_S-4.csv 70 0.4085160425472198 4.062087348253181 1.6008828051224104 4.062087348253181
104 102 data\1_S-4.csv 80 0.47595142031207355 3.724576037953115 0.5935342876852995 3.724576037953115
105 103 data\1_S-4.csv 90 0.4702196369976548 2.770238687192787 0.09388708245413113 2.770238687192787
106 104 data\1_S-5.csv 20 1.967727423890477 1.3254354393668206 1.9607824925465678 1.3254354393668206
107 105 data\1_S-5.csv 30 1.4382082353192773 1.919434236053275 2.023289939059952 1.919434236053275
108 106 data\1_S-5.csv 40 2.7465167206481573 4.409602595386762 5.725165924900896 4.409602595386762
109 107 data\1_S-5.csv 50 3.461920761656759 4.381575529957983 5.075875198611303 4.381575529957983
110 108 data\1_S-5.csv 60 4.361846022920693 4.604849959229172 4.208858373774062 4.604849959229172
111 109 data\1_S-5.csv 70 4.3969327856562845 4.205632373475578 3.2719092143242556 4.205632373475578
112 110 data\1_S-5.csv 80 4.096266723294103 3.499985586090912 2.1966796537602513 3.499985586090912
113 111 data\1_S-5.csv 90 3.4604082851893114 2.689997383766356 1.2253835699076183 2.689997383766356
114 112 data\1_S-6.csv 20 3.053759492348517 2.001309307753893 4.399864757510363 2.001309307753893
115 113 data\1_S-6.csv 30 0.6616315454047025 2.8758400900404943 2.3907096778655346 2.8758400900404943
116 114 data\1_S-6.csv 40 1.8154121853645282 3.2214327224410306 2.5461929166560875 3.2214327224410306
117 115 data\1_S-6.csv 50 1.296886856905884 1.4915193295518268 0.639996196106986 1.4915193295518268
118 116 data\1_S-6.csv 60 0.8015748472732784 0.696411033119271 0.5934316617703056 0.696411033119271
119 117 data\1_S-6.csv 70 0.7876144436121876 0.6730390296235668 0.1265165575151855 0.6730390296235668
120 118 data\1_S-6.csv 80 0.8779263334065708 0.7750307740182709 0.4493235452909501 0.7750307740182709
121 119 data\1_S-6.csv 90 0.7501681896633152 0.6416649676648516 0.12849860415305325 0.6416649676648516
122 120 data\1_S-7.csv 20 5.365254081514151 3.8657561591156813 6.2385985725116875 3.8657561591156813
123 121 data\1_S-7.csv 30 6.020986058758559 6.135746944313514 7.534740868368928 6.135746944313514
124 122 data\1_S-7.csv 40 5.674619852269969 4.703357957475107 5.468678771443814 4.703357957475107
125 123 data\1_S-7.csv 50 3.4690575924798996 1.8878183084882048 1.6025113529316266 1.8878183084882048
126 124 data\1_S-7.csv 60 2.7451423754747624 1.4731986021963825 1.2925956551006061 1.4731986021963825
127 125 data\1_S-7.csv 70 2.7072833040182207 1.5925145664383469 1.5625936995519176 1.5925145664383469
128 126 data\1_S-7.csv 80 2.621881865553797 1.7290734621115118 1.721165557371262 1.7290734621115118
129 127 data\1_S-7.csv 90 2.266894911924734 1.4570027185864196 1.0957970213384967 1.4570027185864196
130 128 data\1_S-8.csv 20 18.11867407113544 14.215247739318466 22.404300227967695 13.446664866431115
131 129 data\1_S-8.csv 30 14.514699952893631 11.335799950369877 17.58355261139789 10.86796392608233
132 130 data\1_S-8.csv 40 11.075185948305768 6.8509390887115895 9.530043636696428 6.673867126195534
133 131 data\1_S-8.csv 50 7.186567380657684 2.8339403044579425 3.85833262551545 2.7885364868377245
134 132 data\1_S-8.csv 60 4.170061258682651 0.9040062070909864 1.1686720201047711 0.9105324134896468
135 133 data\1_S-8.csv 70 1.5780417387192855 1.4050145672359917 0.35952798393250346 1.4178734518905698
136 134 data\1_S-8.csv 80 0.5058499106073733 1.6205084705479829 0.4184494053158285 1.6366433460233913
137 135 data\1_S-8.csv 90 0.4578779578295943 1.6313760499123662 0.2256783271406 1.6521997346239476
138 136 data\1_S-9.csv 20 23.23466856539556 14.38965667065365 11.415193360584711 17.60095766072406
139 137 data\1_S-9.csv 30 8.740016212536279 1.254088481183067 6.8867355672344175 4.699099274275911
140 138 data\1_S-9.csv 40 0.7725497801920852 4.342346270472876 8.128363400745855 0.8423842661623222
141 139 data\1_S-9.csv 50 1.604201044849245 4.046644394358106 6.002530432463326 0.828713418284349
142 140 data\1_S-9.csv 60 1.3390917223895678 2.428693627890554 3.816309142062488 1.0597756937496738
143 141 data\1_S-9.csv 70 1.2202180455836111 1.9103128992797382 3.0048787355486817 1.310797523750748
144 142 data\1_S-9.csv 80 0.5617299433168577 0.9928155840050683 1.4040243056990842 1.8418478186652112
145 143 data\1_S-9.csv 90 0.22486696052940594 0.5792833717765682 1.3539869222261414 2.1243071866986516
146 144 data\1_SP-11.csv 20 1.7081991927226081 7.2313561231667896 6.18712689484869 3.5433619581079885
147 145 data\1_SP-11.csv 30 1.5756064331383481 1.4508379762295698 10.672594578553554 1.617156571881448
148 146 data\1_SP-11.csv 40 1.666416631660893 1.9147387544365118 3.5102269392885606 2.0539228359031503
149 147 data\1_SP-11.csv 50 2.292818865830556 3.0276355451630215 5.7946017504485265 3.032368564205978
150 148 data\1_SP-11.csv 60 1.889989812312286 1.7249795942495172 2.526077644495358 2.0433210528715673
151 149 data\1_SP-11.csv 70 2.103608751730582 1.8058365765796776 1.9073165276319612 2.238909008345376
152 150 data\1_SP-11.csv 80 1.8788628904767846 1.162865729788941 1.1848375699933602 2.0019114454225315
153 151 data\1_SP-11.csv 90 1.6578045150943486 0.8013356838663631 0.3893484790967483 1.835912955550954
154 152 data\1_SP-13.csv 20 0.4372325497058458 3.6243420678089686 7.415206093573297 0.6251074747335184
155 153 data\1_SP-13.csv 30 0.7131156843560439 1.182411372082287 2.1000835574758305 0.49852265726353917
156 154 data\1_SP-13.csv 40 0.4278189077600768 0.39601474936665476 2.735854312131982 0.8957677532161553
157 155 data\1_SP-13.csv 50 1.4339059010061033 1.9491290609659973 2.656249815428144 0.7047311863777824
158 156 data\1_SP-13.csv 60 0.39242710983822804 0.15258643592231405 1.3278099872124942 0.5322267611739026
159 157 data\1_SP-13.csv 70 0.18072037145060008 0.2617744847181645 1.261638455555825 0.691105669926377
160 158 data\1_SP-13.csv 80 0.17867732178011012 0.1735062337331057 0.40809888582969184 0.698209101804319
161 159 data\1_SP-13.csv 90 0.19491393115805777 0.12209966495242676 0.4554548974773021 0.6823303798309936
162 160 data\1_SP-17.csv 20 18.507066346497727 18.605257986168017 8.520723473217428 9.226100175280822
163 161 data\1_SP-17.csv 30 5.320558014435307 4.776189146250437 31.302259975691005 4.6214332180141895
164 162 data\1_SP-17.csv 40 1.7586801283380498 4.547990441524903 3.797922268658988 4.561169272178184
165 163 data\1_SP-17.csv 50 2.7919874072221913 3.499394713176624 3.6674731091011044 3.661841220811493
166 164 data\1_SP-17.csv 60 4.509512187046268 5.062010812243616 6.293231675366611 5.19153025332887
167 165 data\1_SP-17.csv 70 4.477434583027644 4.415713384649314 2.715851907697277 4.835842604836214
168 166 data\1_SP-17.csv 80 4.118355090968156 3.5969326524892806 1.6372084145126302 4.409162438716603
169 167 data\1_SP-17.csv 90 3.5226698829318543 2.7625898354405023 0.9570607962268323 3.912308283959222
170 168 data\1_SP-18.csv 20 7.606253940268715 15.613827267689272 21.055177174811675 16.01873246119757
171 169 data\1_SP-18.csv 30 14.367568344429996 18.4759301869696 21.26918604052492 18.839682917325284
172 170 data\1_SP-18.csv 40 15.142173533690988 15.260101482485425 12.11525582622308 16.025220403227284
173 171 data\1_SP-18.csv 50 13.236830193943605 11.361940339119686 10.380721972228644 12.690863720611114
174 172 data\1_SP-18.csv 60 12.572109779868718 10.373045747898717 7.475192965834482 12.053241768288808
175 173 data\1_SP-18.csv 70 11.391355252271676 8.991883569123548 5.204559449064496 10.965688729889084
176 174 data\1_SP-18.csv 80 8.7658521973087 6.517142595190262 3.1276197810755373 8.87611960090738
177 175 data\1_SP-18.csv 90 6.381586755011683 4.6267059923998515 2.0247272214014176 7.174463796974973
178 176 data\1_SP-2.csv 20 7.251670001515235 4.035528221519683 6.821820576668616 2.489462690852944
179 177 data\1_SP-2.csv 30 6.394859481503299 3.334644752337675 6.494840643140869 2.1072941692190876
180 178 data\1_SP-2.csv 40 3.5150979054006277 1.030476235045081 1.663475036364787 0.6352824649243111
181 179 data\1_SP-2.csv 50 2.162925795561472 0.7487742235720621 2.265307447579157 0.5469280850738427
182 180 data\1_SP-2.csv 60 1.5530356583388822 0.9400941478766079 1.7749434198125569 0.7003402990927681
183 181 data\1_SP-2.csv 70 1.92956285477023 1.4854573892940488 2.159691403245862 1.191125682131134
184 182 data\1_SP-2.csv 80 1.7620101358819777 1.2590310165580139 0.8336330267520252 1.015359141094122
185 183 data\1_SP-2.csv 90 1.6752219272312727 1.1350087827397781 0.6806276375598923 0.9247523614210207
186 184 data\1_SP-21.csv 20 42.12676455859104 38.90120020317653 34.309623185121495 41.718088947091374
187 185 data\1_SP-21.csv 30 33.64631516446726 25.29658461536414 15.38596010345607 30.561471155274536
188 186 data\1_SP-21.csv 40 20.49815346851365 13.283944333261775 4.568010914517468 20.510334180313954
189 187 data\1_SP-21.csv 50 16.49123687721858 10.449087808602119 1.9678403995436788 18.01891988306453
190 188 data\1_SP-21.csv 60 11.147105244244372 7.122962434632913 0.9753825221211637 14.617090212485024
191 189 data\1_SP-21.csv 70 7.597835933362693 5.075843395024002 0.41583681120581284 12.169507338053933
192 190 data\1_SP-21.csv 80 5.3839849473707835 3.963110348842146 0.5075445221631049 10.439725199383387
193 191 data\1_SP-21.csv 90 4.047770694365581 3.216550040119223 0.280779464110913 9.48544972279011
194 192 data\1_SP-23.csv 20 13.116024974500316 11.406415919730044 602.2836630636259 12.191707590091927
195 193 data\1_SP-23.csv 30 1.4112953886998152 0.8966962615790152 4.264442175046207 1.3311405338931415
196 194 data\1_SP-23.csv 40 0.503194490519577 1.246997021327698 3.8553845049761346 1.011465585089704
197 195 data\1_SP-23.csv 50 0.40177904473664083 1.3013884145405648 1.6336735889893956 0.8320807816723674
198 196 data\1_SP-23.csv 60 0.5378967117637476 0.983665873885793 1.0010073396356354 0.8278345528564164
199 197 data\1_SP-23.csv 70 0.4535655885338811 0.491565848929026 2.8099125224415813 1.1146050245412609
200 198 data\1_SP-23.csv 80 0.5866926857702145 0.6017709913879816 2.2594119811584648 1.460892813154599
201 199 data\1_SP-23.csv 90 0.7117527371636706 0.6781729753686052 0.6003291518938575 1.4891135231245114
202 200 data\1_SP-24.csv 20 8.05208321507387 2.3775483088799723 8.808339547201996 1.8054682221258365
203 201 data\1_SP-24.csv 30 4.754057585152563 1.8972328533869973 5.869420242870603 1.8346948063531192
204 202 data\1_SP-24.csv 40 3.7044220656872535 1.7774295583659288 5.438070310197358 1.487388512391807
205 203 data\1_SP-24.csv 50 3.3814507465626766 2.2423339061827465 5.156771184685447 0.7935985345444764
206 204 data\1_SP-24.csv 60 2.9580616982955585 2.1138244336006364 3.911737118094992 0.7008325198972941
207 205 data\1_SP-24.csv 70 2.053019642075373 1.3755461864353626 1.9783233512007146 0.8315397306624637
208 206 data\1_SP-24.csv 80 0.925154070288001 0.4176762471904959 0.48168303571445314 1.212222131618538
209 207 data\1_SP-24.csv 90 0.2631479686071642 0.2788168836221197 0.669556803256403 1.498288156663679
210 208 data\1_SP-27.csv 20 18.010609556858284 14.166985114707632 23.194832884944326 3.656394863473691
211 209 data\1_SP-27.csv 30 11.71354908610107 7.814156489676422 13.855485533288206 2.9853163240886675
212 210 data\1_SP-27.csv 40 6.586066767787878 2.817013389041188 5.688088848545767 4.590422827040999
213 211 data\1_SP-27.csv 50 3.3522604033921652 0.9786737289806023 2.6240804510051956 5.782538636584345
214 212 data\1_SP-27.csv 60 1.3335052593426149 1.6158617009779779 1.965224999359457 6.167856737452781
215 213 data\1_SP-27.csv 70 0.7395930072864558 1.742199982469519 1.3781521788721838 6.043388875004583
216 214 data\1_SP-27.csv 80 0.7129711553289985 1.9765310226371968 0.47991145803682334 6.111852384127282
217 215 data\1_SP-27.csv 90 0.9512041354104962 1.8979783064509756 0.401096122731131 5.927546475798311
218 216 data\1_SP-29.csv 20 58.11456968859943 54.20867884329497 72.7878344325526 47.176567041237234
219 217 data\1_SP-29.csv 30 42.261288398671475 37.208725595653966 55.65442483030424 33.51072091517887
220 218 data\1_SP-29.csv 40 30.26589551904199 25.41935167585668 39.27528850191659 24.03930285852246
221 219 data\1_SP-29.csv 50 22.045627271044555 17.410788234879284 28.384109882092144 17.082361204181726
222 220 data\1_SP-29.csv 60 12.58725003675586 8.625710340309544 21.141175191142423 8.736739005847276
223 221 data\1_SP-29.csv 70 10.379782274387619 6.498289228635464 17.61674109226546 6.623364989079403
224 222 data\1_SP-29.csv 80 9.388483891991743 5.731592744259239 13.96446983079995 5.867370452446342
225 223 data\1_SP-29.csv 90 8.083201483420313 4.860118636658717 11.355207422945249 4.998247642890794
226 224 data\1_SP-3.csv 20 2.7639666377013827 0.9505339793546425 2.1271474494439353 1.889746668823346
227 225 data\1_SP-3.csv 30 1.7588046260832937 1.0346779977857292 1.2190904976454986 1.0911784639097006
228 226 data\1_SP-3.csv 40 1.0122462164703974 0.3562513894553611 0.9133417471727429 1.3412176434826666
229 227 data\1_SP-3.csv 50 0.875772435310304 0.597764287699386 1.3473701648152487 0.8205124440118188
230 228 data\1_SP-3.csv 60 0.624543539369494 0.3742951816014111 0.9231072880468726 0.9030900318430175
231 229 data\1_SP-3.csv 70 0.8332515554331394 0.6103887926575137 1.11269087059214 0.7356865313899721
232 230 data\1_SP-3.csv 80 0.9419012904046294 0.6892736180113511 0.869350077634995 0.691929755323423
233 231 data\1_SP-3.csv 90 1.0498331495160493 0.7424376198659032 0.6773245400829682 0.6197977029042671
234 232 data\1_SP-31.csv 20 19.33714932197116 14.109524841969442 16.3240970149211 7.796826333425127
235 233 data\1_SP-31.csv 30 14.93768169180386 11.575579244717796 14.889609790138776 7.408257853548278
236 234 data\1_SP-31.csv 40 7.225161923150376 3.1546066039808682 7.222394920036293 3.5712235463176905
237 235 data\1_SP-31.csv 50 2.057140529710824 11.165257759960324 11.063404181253127 11.111250850191475
238 236 data\1_SP-31.csv 60 3.129236548164459 9.471968574955419 5.753283664275471 9.626092065807585
239 237 data\1_SP-31.csv 70 3.493324425986982 6.647691615846848 3.1139471987914424 7.358201799611277
240 238 data\1_SP-31.csv 80 3.7614567295505226 5.439641426488154 3.3922462564020117 6.468800659704724
241 239 data\1_SP-31.csv 90 3.6850586112356307 4.403414502163275 2.1002848993271788 5.7198909032835195
242 240 data\1_SP-4.csv 20 14.1800105801406 3.1497257010769313 2.3716109308472393 2.9888371479513616
243 241 data\1_SP-4.csv 30 8.814180972034736 2.3841507421739756 1.0193269965751968 2.421031029465271
244 242 data\1_SP-4.csv 40 4.020069458092881 4.266027202872742 6.595912285842589 4.856902549700719
245 243 data\1_SP-4.csv 50 1.5655809586933982 4.421824166333213 3.6168109381332747 4.737919350452426
246 244 data\1_SP-4.csv 60 2.8255889328529777 4.318780481087872 3.638592480485815 4.348949039715682
247 245 data\1_SP-4.csv 70 3.0098355177291696 3.5706976401314443 1.8948403042494955 3.665877481781085
248 246 data\1_SP-4.csv 80 3.3383481132125388 3.533116526395827 1.7187934268197498 3.8936071711885947
249 247 data\1_SP-4.csv 90 3.500274980525205 3.4634537756934947 1.0905947127296258 4.12898100426122
250 248 data\1_SP-5.csv 20 19.01982206124973 18.231684083564126 22.856744017504607 6.552090153390118
251 249 data\1_SP-5.csv 30 8.619850907506631 1.8732529579056163 6.122867503531058 1.9684593608640961
252 250 data\1_SP-5.csv 40 4.373489591201087 2.4254200148711518 5.99503921049501 3.5165520880592576
253 251 data\1_SP-5.csv 50 0.7840007911603155 3.1212360913344726 3.3018738611819773 4.031962434343803
254 252 data\1_SP-5.csv 60 1.385233520758738 2.9946337522798414 2.51980850430202 4.095636621635693
255 253 data\1_SP-5.csv 70 1.3376003278793556 2.155169165017391 1.217087121208194 3.848020332177294
256 254 data\1_SP-5.csv 80 1.5794214196008316 2.145853516105067 1.6616812187056658 4.1534635206323545
257 255 data\1_SP-5.csv 90 1.6476033879915875 1.9262754528654276 0.9602577234857359 4.3428653785188365
258 256 data\1_SP-6.csv 20 18.823368133620573 9.711298695408024 18.89361772643047 5.532272743878993
259 257 data\1_SP-6.csv 30 7.2850741787827795 3.40676523188954 13.020198301363921 4.910197270345021
260 258 data\1_SP-6.csv 40 4.150725891586423 3.779152594657274 2.932826525485085 5.162388657496632
261 259 data\1_SP-6.csv 50 3.590739524819434 5.876445324519404 6.519352298532605 6.766107158344899
262 260 data\1_SP-6.csv 60 5.257258756772454 6.6405512761123 7.02026603377924 7.704340475747744
263 261 data\1_SP-6.csv 70 6.499622877299118 7.338520754512718 6.2149369211993335 8.734147830763076
264 262 data\1_SP-6.csv 80 7.197584388519787 7.16748519483013 4.571515896385614 9.240389511522254
265 263 data\1_SP-6.csv 90 7.258476142471198 6.391707237133926 2.5189317643384292 9.378416986074912
266 264 data\1_SP-8.csv 20 13.724402266628424 3.8474261858726027 4.297387192543221 2.979953000441522
267 265 data\1_SP-8.csv 30 8.117162803997703 1.8192082930013656 10.859572755132064 3.763598263372951
268 266 data\1_SP-8.csv 40 5.601929975825574 3.1750076497104125 4.600704081525033 4.351429810828936
269 267 data\1_SP-8.csv 50 5.418106443167945 4.1632861639884515 6.812329827763838 4.8346123593513175
270 268 data\1_SP-8.csv 60 4.541530280936754 3.5537333439080747 4.588534853343822 4.8770768338388235
271 269 data\1_SP-8.csv 70 5.02028811636518 3.9026228580560693 3.7664338358837894 5.709616335803563
272 270 data\1_SP-8.csv 80 5.435344889150946 3.916965279400222 3.2045994621080216 6.627286940187872
273 271 data\1_SP-8.csv 90 5.48054191461318 3.437963134670824 1.7600499561277778 7.513525270362268

View File

@ -13,7 +13,6 @@ time vs. (consolidation) settlement curves of soft clay ground.
# =================
# Import 섹션
# =================
import os.path
import numpy as np
import pandas as pd
@ -57,50 +56,8 @@ def fun_rmse(py1, py2):
return np.sqrt(mse)
def run_settle_prediction_from_file(input_file, output_dir,
final_step_predict_percent, additional_predict_percent,
plot_show,
print_values,
run_original_hyperbolic='True',
run_nonlinear_hyperbolic='True',
run_weighted_nonlinear_hyperbolic='True',
run_asaoka='True',
run_step_prediction='True',
asaoka_interval=3):
# 현재 파일 이름 출력
print("Working on " + input_file)
# CSV 파일 읽기
data = pd.read_csv(input_file, encoding='euc-kr')
# 시간, 침하량, 성토고 배열 생성
time = data['Time'].to_numpy()
settle = data['Settlement'].to_numpy()
surcharge = data['Surcharge'].to_numpy()
run_settle_prediction(point_name=input_file, np_time=time, np_surcharge=surcharge, np_settlement=settle,
final_step_predict_percent=final_step_predict_percent,
additional_predict_percent=additional_predict_percent, plot_show=plot_show,
print_values=print_values,
run_original_hyperbolic=run_original_hyperbolic,
run_nonlinear_hyperbolic=run_nonlinear_hyperbolic,
run_weighted_nonlinear_hyperbolic=run_weighted_nonlinear_hyperbolic,
run_asaoka=run_asaoka,
run_step_prediction=run_step_prediction,
asaoka_interval=asaoka_interval)
def run_settle_prediction(point_name,
np_time, np_surcharge, np_settlement,
final_step_predict_percent, additional_predict_percent,
plot_show,
print_values,
run_original_hyperbolic='True',
run_nonlinear_hyperbolic='True',
run_weighted_nonlinear_hyperbolic='True',
run_asaoka = 'True',
run_step_prediction='True',
asaoka_interval = 5):
def run_settle_prediction(point_name, np_time, np_surcharge, np_settlement,
final_step_predict_percent, additional_predict_percent, asaoka_interval = 5):
# ====================
# 파일 읽기, 데이터 설정
@ -129,12 +86,11 @@ def run_settle_prediction(point_name,
# 단계 시작 시점 초기화
step_start_date = 0
# 모든 시간-성토고 데이터에서 순차적으로 확인
for index in range(len(surcharge)):
# 만일 성토고의 변화가 있을 경우,
if surcharge[index] != current_surcharge:
if surcharge[index] > current_surcharge*1.05 or surcharge[index] < current_surcharge*0.95:
step_end_index.append(index)
step_start_index.append(index)
current_surcharge = surcharge[index]
@ -168,8 +124,13 @@ def run_settle_prediction(point_name,
step_end_index_adjust.append((step_end_index[i]))
# 성토 시작 및 끝 인덱스 리스트 업데이트
# 필터링 된 단계가 하나라도 있을 때만 업데이트 (없으면 기존 단계 유지)
if len(step_start_index_adjust) > 0:
step_start_index = step_start_index_adjust
step_end_index = step_end_index_adjust
else:
# 디버깅용 출력 (선택 사항)
print("[Warning] No valid steps found after adjustment. Using original steps.")
# 침하 예측을 수행할 단계 설정 (현재 끝에서 2단계 이용)
step_start_index = step_start_index[-2:]
@ -199,6 +160,11 @@ def run_settle_prediction(point_name,
final_step_predict_end_index = count - 1
break
# 인덱스를 찾지 못했을 경우(예: 마지막 데이터까지 모두 사용하는 경우)
# -1로 남아있으면 배열 길이 차이로 에러가 발생하므로, 전체 데이터 길이로 설정
if final_step_predict_end_index == -1:
final_step_predict_end_index = final_index
# 마지막 성토 단계, 마지막 계측 시점 인덱스 업데이트
final_step_monitor_end_index = step_end_index[num_steps - 1]
step_end_index[num_steps - 1] = final_step_predict_end_index
@ -277,8 +243,6 @@ def run_settle_prediction(point_name,
# 쌍곡선 계수 저장 및 출력
x_step = res_lsq_hyper_nonlinear.x
if print_values:
print(x_step)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_to_end_update = generate_data_hyper(x_step, tm_to_end)
@ -288,89 +252,6 @@ def run_settle_prediction(point_name,
sp_step[step_start_index[i]:final_index] + sp_to_end_update + s0_this_step
'''
# ======================================
# Settlement Prediction (Step + Asaoka)
# ======================================
# TODO: Modify this
# 예측 침하량 초기화
sp_step_asaoka = np.zeros(time.size)
# 각 단계별로 진행
for i in range(0, num_steps):
# 각 단계별 계측 시점과 계측 침하량 배열 생성
tm_this_step = time[step_start_index[i]:step_end_index[i]]
sm_this_step = settle[step_start_index[i]:step_end_index[i]]
# 이전 단계 까지 예측 침하량 중 현재 단계에 해당 하는 부분 추출
sp_this_step = sp_step[step_start_index[i]:step_end_index[i]]
# 현재 단계 시작 부터 끝까지 시간 데이터 추출
tm_to_end = time[step_start_index[i]:final_index]
# 기존 예측 침하량에 대한 보정
sm_this_step = sm_this_step - sp_this_step
# 초기 시점 및 침하량 산정
t0_this_step = tm_this_step[0]
s0_this_step = sm_this_step[0]
# 초기 시점에 대한 시간 조정
tm_this_step = tm_this_step - t0_this_step
tm_to_end = tm_to_end - t0_this_step
# 초기 침하량에 대한 침하량 조정
sm_this_step = sm_this_step - s0_this_step
# 등간격 데이터 생성을 위한 Interpolation 함수 설정
inter_fn = interp1d(tm_this_step, sm_this_step, kind='cubic')
# 데이터 구축 간격 및 그에 해당하는 데이터 포인트 개수 설정
num_data = int(tm_this_step[-1] / asaoka_interval)
# 등간격 시간 및 침하량 데이터 설정
tm_this_step_inter = np.linspace(0, tm_this_step[-1], num=num_data, endpoint=True)
sm_this_step_inter = inter_fn(tm_this_step_inter)
# 이전 이후 등간격 침하량 배열 구축
sm_this_step_before = sm_this_step_inter[0:-2]
sm_this_step_after = sm_this_step_inter[1:-1]
# Least square 변수 초기화
x0 = np.ones(2)
# Least square 분석을 통한 침하 곡선 계수 결정
res_lsq_asaoka = least_squares(fun_asaoka, x0, args=(sm_this_step_before, sm_this_step_after))
# 기존 쌍곡선 법 계수 저장 및 출력
x_step_asaoka = res_lsq_asaoka.x
if print_values:
print(x_step_asaoka)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_to_end_update = generate_data_asaoka(x_step_asaoka, tm_to_end, asaoka_interval)
# 예측 침하량 업데이트
sp_step_asaoka[step_start_index[i]:final_index] = \
sp_step_asaoka[step_start_index[i]:final_index] + sp_to_end_update + s0_this_step
'''
# =========================================================
# Settlement prediction (nonliner, weighted nonlinear and original hyperbolic)
# =========================================================
@ -399,11 +280,14 @@ def run_settle_prediction(point_name,
args=(tm_hyper, sm_hyper))
# 비선형 쌍곡선 법 계수 저장 및 출력
x_hyper_nonlinear = res_lsq_hyper_nonlinear.x
if print_values:
print(x_hyper_nonlinear)
# 가중 비선형 쌍곡선 가중치 산정
weight = tm_hyper / np.sum(tm_hyper)
# 시간 합계가 0인 경우(데이터 부족 등) 0으로 나누는 에러 방지
sum_tm = np.sum(tm_hyper)
if sum_tm == 0:
weight = np.ones_like(tm_hyper) # 가중치를 모두 1로 설정
else:
weight = tm_hyper / sum_tm
# 회귀분석 시행 (가중 비선형 쌍곡선)
x0 = np.ones(2)
@ -411,8 +295,6 @@ def run_settle_prediction(point_name,
args=(tm_hyper, sm_hyper, weight))
# 비선형 쌍곡선 법 계수 저장 및 출력
x_hyper_weight_nonlinear = res_lsq_hyper_weight_nonlinear.x
if print_values:
print(x_hyper_weight_nonlinear)
# 회귀분석 시행 (기존 쌍곡선법) - (0, 0)에 해당하는 초기 데이터를 제외하고 회귀분석 실시
x0 = np.ones(2)
@ -420,8 +302,6 @@ def run_settle_prediction(point_name,
args=(tm_hyper[1:], sm_hyper[1:]))
# 기존 쌍곡선 법 계수 저장 및 출력
x_hyper_original = res_lsq_hyper_original.x
if print_values:
print(x_hyper_original)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_hyper_nonlinear = generate_data_hyper(x_hyper_nonlinear, time_hyper)
@ -434,12 +314,6 @@ def run_settle_prediction(point_name,
sp_hyper_original = sp_hyper_original + s0_hyper
time_hyper = time_hyper + t0_hyper
# ===============================
# Settlement prediction (Asaoka)
# ===============================
@ -463,7 +337,12 @@ def run_settle_prediction(point_name,
sm_asaoka = sm_asaoka - s0_asaoka
# 등간격 데이터 생성을 위한 Interpolation 함수 설정
inter_fn = interp1d(tm_asaoka, sm_asaoka, kind='cubic')
inter_fn = interp1d(tm_asaoka, sm_asaoka, kind='linear')
'''
변경사항
kind='cubic' --> kind='linear'
드물게 동일 시점에 침하 데이터가 다수 존재할 경우, 에러가 나서 수정함
'''
# 데이터 구축 간격 및 그에 해당하는 데이터 포인트 개수 설정
num_data = int(tm_asaoka[-1] / asaoka_interval)
@ -484,8 +363,6 @@ def run_settle_prediction(point_name,
# 기존 쌍곡선 법 계수 저장 및 출력
x_asaoka = res_lsq_asaoka.x
if print_values:
print(x_asaoka)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_asaoka = generate_data_asaoka(x_asaoka, time_asaoka, asaoka_interval)
@ -494,286 +371,13 @@ def run_settle_prediction(point_name,
sp_asaoka = sp_asaoka + s0_asaoka
time_asaoka = time_asaoka + t0_asaoka
# ==============================
# Post-Processing #1 : 에러 산정
# ==============================
# RMSE 계산 데이터 구간 설정 (계측)
sm_rmse = settle[final_step_predict_end_index:final_step_monitor_end_index]
# RMSE 계산 데이터 구간 설정 (단계)
sp_step_rmse = sp_step[final_step_predict_end_index:final_step_monitor_end_index]
# RMSE 계산 데이터 구간 설정 (쌍곡선)
sp_hyper_nonlinear_rmse = sp_hyper_nonlinear[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
sp_hyper_weight_nonlinear_rmse \
= sp_hyper_weight_nonlinear[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
sp_hyper_original_rmse = sp_hyper_original[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
# RMSE 계산 데이터 구간 설정 (아사오카)
sp_asaoka_rmse = sp_asaoka[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
# RMSE 산정 (단계, 비선형 쌍곡선, 기존 쌍곡선)
rmse_step = fun_rmse(sm_rmse, sp_step_rmse)
rmse_hyper_nonlinear = fun_rmse(sm_rmse, sp_hyper_nonlinear_rmse)
rmse_hyper_weight_nonlinear = fun_rmse(sm_rmse, sp_hyper_weight_nonlinear_rmse)
rmse_hyper_original = fun_rmse(sm_rmse, sp_hyper_original_rmse)
rmse_asaoka = fun_rmse(sm_rmse, sp_asaoka_rmse)
# RMSE 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선)
if print_values:
print("RMSE (Nonlinear Hyper + Step): %0.3f" % rmse_step)
print("RMSE (Nonlinear Hyperbolic): %0.3f" % rmse_hyper_nonlinear)
print("RMSE (Weighted Nonlinear Hyperbolic): %0.3f" % rmse_hyper_weight_nonlinear)
print("RMSE (Original Hyperbolic): %0.3f" % rmse_hyper_original)
print("RMSE (Asaoka): %0.3f" % rmse_asaoka)
# (최종 계측 침하량 - 예측 침하량) 계산
final_error_step = np.abs(settle[-1] - sp_step_rmse[-1])
final_error_hyper_nonlinear = np.abs(settle[-1] - sp_hyper_nonlinear_rmse[-1])
final_error_hyper_weight_nonlinear = np.abs(settle[-1] - sp_hyper_weight_nonlinear_rmse[-1])
final_error_hyper_original = np.abs(settle[-1] - sp_hyper_original_rmse[-1])
final_error_asaoka = np.abs(settle[-1] - sp_asaoka_rmse[-1])
# (최종 계측 침하량 - 예측 침하량) 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선)
if print_values:
print("Error in Final Settlement (Nonlinear Hyper + Step): %0.3f" % final_error_step)
print("Error in Final Settlement (Nonlinear Hyperbolic): %0.3f" % final_error_hyper_nonlinear)
print("Error in Final Settlement (Weighted Nonlinear Hyperbolic): %0.3f" % final_error_hyper_weight_nonlinear)
print("Error in Final Settlement (Original Hyperbolic): %0.3f" % final_error_hyper_original)
print("Error in Final Settlement (Asaoka): %0.3f" % final_error_asaoka)
# ==========================================
# Post-Processing #2 : 그래프 작성
# ==========================================
# 만약 그래프 도시가 필요할 경우,
if plot_show:
# 그래프 크기, 서브 그래프 개수 및 비율 설정
fig, axes = plt.subplots(2, 1, figsize=(12, 9), gridspec_kw={'height_ratios': [1, 3]})
# 성토고 그래프 표시
axes[0].plot(time, surcharge, color='black', label='surcharge height')
# 성토고 그래프 설정
axes[0].set_ylabel("Surcharge height (m)", fontsize=15)
axes[0].set_xlim(left=0)
axes[0].grid(color="gray", alpha=.5, linestyle='--')
axes[0].tick_params(direction='in')
# 계측 및 예측 침하량 표시
axes[1].scatter(time[0:settle.size], -settle, s=50,
facecolors='white', edgecolors='black', label='measured data')
axes[1].plot(time_hyper, -sp_hyper_original,
linestyle='--', color='red', label='Original Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_nonlinear,
linestyle='--', color='green', label='Nonlinear Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_weight_nonlinear,
linestyle='--', color='blue', label='Nonlinear Hyperbolic (Weighted)')
axes[1].plot(time_asaoka, -sp_asaoka,
linestyle='--', color='orange', label='Asaoka')
axes[1].plot(time[step_start_index[0]:], -sp_step[step_start_index[0]:],
linestyle='--', color='navy', label='Nonlinear + Step Loading')
# 침하량 그래프 설정
axes[1].set_xlabel("Time (day)", fontsize=15)
axes[1].set_ylabel("Settlement (cm)", fontsize=15)
axes[1].set_ylim(top=0)
axes[1].set_ylim(bottom=-1.5 * settle.max())
axes[1].set_xlim(left=0)
axes[1].grid(color="gray", alpha=.5, linestyle='--')
axes[1].tick_params(direction='in')
# 범례 표시
axes[1].legend(loc=1, ncol=3, frameon=True, fontsize=10)
# 예측 데이터 사용 범위 음영 처리 - 단계성토
plt.axvspan(time[step_start_index[0]], final_step_predict_end_date,
alpha=0.1, color='grey', hatch='//')
# 예측 데이터 사용 범위 음영 처리 - 기존 및 비선형 쌍곡선
plt.axvspan(final_step_start_date, final_step_predict_end_date,
alpha=0.1, color='grey', hatch='\\')
# 예측 데이터 사용 범위 표시 화살표 세로 위치 설정
arrow1_y_loc = 1.3 * min(-settle)
arrow2_y_loc = 1.4 * min(-settle)
# 화살표 크기 설정
arrow_head_width = 0.03 * max(settle)
arrow_head_length = 0.01 * max(time)
# 예측 데이터 사용 범위 화살표 처리 - 단계성토
axes[1].arrow(time[step_start_index[0]], arrow1_y_loc,
final_step_predict_end_date - time[step_start_index[0]], 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_predict_end_date, arrow1_y_loc,
time[step_start_index[0]] - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# 예측 데이터 사용 범위 화살표 처리 - 기존 및 비선형 쌍곡선
axes[1].arrow(final_step_start_date, arrow2_y_loc,
final_step_predict_end_date - final_step_start_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_predict_end_date, arrow2_y_loc,
final_step_start_date - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# Annotation 표시용 공간 설정
space = max(time) * 0.01
# 예측 데이터 사용 범위 범례 표시 - 단계성토
plt.annotate('Data Range Used (Nonlinear + Step Loading)', xy=(final_step_predict_end_date, arrow1_y_loc),
xytext=(final_step_predict_end_date + space, arrow1_y_loc),
horizontalalignment='left', verticalalignment='center')
# 예측 데이터 사용 범위 범례 표시 - 기존 및 비선형 쌍곡선
plt.annotate('Data Range Used (Hyperbolic and Asaoka)', xy=(final_step_predict_end_date, arrow1_y_loc),
xytext=(final_step_predict_end_date + space, arrow2_y_loc),
horizontalalignment='left', verticalalignment='center')
# RMSE 산정 범위 표시 화살표 세로 위치 설정
arrow3_y_loc = 0.55 * min(-settle)
# RMSE 산정 범위 화살표 표시
axes[1].arrow(final_step_predict_end_date, arrow3_y_loc,
final_step_end_date - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_end_date, arrow3_y_loc,
final_step_predict_end_date - final_step_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# RMSE 산정 범위 세로선 설정
axes[1].axvline(x=final_step_end_date, color='silver', linestyle=':')
# RMSE 산정 범위 범례 표시
plt.annotate('RMSE Estimation Section', xy=(final_step_end_date, arrow3_y_loc),
xytext=(final_step_end_date + space, arrow3_y_loc),
horizontalalignment='left', verticalalignment='center')
# RMSE 출력
mybox = {'facecolor': 'white', 'edgecolor': 'black', 'boxstyle': 'round', 'alpha': 0.2}
plt.text(max(time) * 1.04, 0.20 * min(-settle),
r"$\bf{Root\ Mean\ Squared\ Error}$"
+ "\n" + "Original Hyperbolic: %0.3f" % rmse_hyper_original
+ "\n" + "Nonlinear Hyperbolic: %0.3f" % rmse_hyper_nonlinear
+ "\n" + "Nonlinear Hyperbolic (Weighted): %0.3f" % rmse_hyper_weight_nonlinear
+ "\n" + "Asaoka: %0.3f" % rmse_asaoka
+ "\n" + "Nonlinear + Step Loading: %0.3f" % rmse_step,
color='r', horizontalalignment='right',
verticalalignment='top', fontsize='10', bbox=mybox)
# (최종 계측 침하량 - 예측값) 출력
plt.text(max(time) * 1.04, 0.55 * min(-settle),
r"$\bf{Error\ in\ Final\ Settlement}$"
+ "\n" + "Original Hyperbolic: %0.3f" % final_error_hyper_original
+ "\n" + "Nonlinear Hyperbolic: %0.3f" % final_error_hyper_nonlinear
+ "\n" + "Nonlinear Hyperbolic (Weighted): %0.3f" % final_error_hyper_weight_nonlinear
+ "\n" + "Asaoka: %0.3f" % final_error_asaoka
+ "\n" + "Nonlinear + Step Loading: %0.3f" % final_error_step,
color='r', horizontalalignment='right',
verticalalignment='top', fontsize='10', bbox=mybox)
# 파일 이름만 추출
filename = os.path.basename(point_name)
# 그래프 제목 표시
plt.title(filename + ": up to %i%% data used in the final step" % final_step_predict_percent)
# 그래프 저장 (SVG 및 PNG)
# plt.savefig(output_dir + '/' + filename +' %i percent (SVG).svg' %final_step_predict_percent, bbox_inches='tight')
#plt.savefig(output_dir + '/' + filename + ' %i percent (PNG).png' % final_step_predict_percent, bbox_inches='tight')
# 그래프 출력
if plot_show:
plt.show()
# 그래프 닫기 (메모리 소모 방지)
plt.close()
# 예측 완료 표시
print("Settlement prediction is done for " + filename +
" with " + str(final_step_predict_percent) + "% data usage")
# 단계 성토 고려 여부 표시
is_multi_step = True
if len(step_start_index) == 1:
is_multi_step = False
# 반환
axes[1].plot(time_hyper, -sp_hyper_original,
linestyle='--', color='red', label='Original Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_nonlinear,
linestyle='--', color='green', label='Nonlinear Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_weight_nonlinear,
linestyle='--', color='blue', label='Nonlinear Hyperbolic (Weighted)')
axes[1].plot(time_asaoka, -sp_asaoka,
linestyle='--', color='orange', label='Asaoka')
axes[1].plot(time[step_start_index[0]:], -sp_step[step_start_index[0]:],
linestyle='--', color='navy', label='Nonlinear + Step Loading')
return [time_hyper, sp_hyper_original,
time_hyper, sp_hyper_nonlinear,
time_hyper, sp_hyper_weight_nonlinear,
time_asaoka, sp_asaoka,
time[step_start_index[0]:], sp_step[step_start_index[0]:],
rmse_hyper_original,
rmse_hyper_nonlinear,
rmse_hyper_weight_nonlinear,
rmse_asaoka,
rmse_step,
final_error_hyper_original,
final_error_hyper_nonlinear,
final_error_hyper_weight_nonlinear,
final_error_asaoka,
final_error_step]
time[step_start_index[0]:], sp_step[step_start_index[0]:]]
'''
run_settle_prediction(input_file='data/2-5_No.39.csv',
output_dir='output',
final_step_predict_percent=50,
additional_predict_percent=100,
plot_show=True,
print_values=True,
run_original_hyperbolic=True,
run_nonlinear_hyperbolic=True,
run_weighted_nonlinear_hyperbolic=True,
run_asaoka=True,
run_step_prediction=True,
asaoka_interval=3,
settle_unit='cm')
변경사항
필요없는 post-processing 코드를 에러 방지 차원에서 모두 삭제
'''