From SW's laptop

master
sanginnwoo 2022-10-17 20:43:26 +09:00
parent 27998d1195
commit cba87a151a
9 changed files with 368 additions and 924 deletions

291
Error Analysis.py Normal file
View File

@ -0,0 +1,291 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
'''
데이터 구조: Error_overall.csv
'File', 'Data_usage',
'RMSE_hyper_original', 'RMSE_hyper_nonlinear',
'Final_error_hyper_original', 'Final_error_hyper_nonlinear']
'''
# CSV 파일 읽기
df_overall = pd.read_csv('Error_overall.csv', encoding='euc-kr')
# 통계량 저장소
# 열 mean / median / percentile
# 행 RMSE (O) / RMSE (NL) / FE (O) / FE (NL)
statistic =[]
count = 0
# 최종 성토 단계에서 각 침하 데이터 사용 영역에 대해서 다음을 수행
for data_usage in range(20, 100, 10):
# 전체 Error 분석을 위한 Dataframe 설정
df_overall_sel = df_overall.loc[df_overall['Data_usage'] == data_usage]
# RMSE 및 FE를 불러서 메모리에 저장
RMSE_hyper_original = df_overall_sel['RMSE_hyper_original'].to_numpy()
RMSE_hyper_nonlinear = df_overall_sel['RMSE_hyper_nonlinear'].to_numpy()
FE_hyper_original = df_overall_sel['Final_error_hyper_original'].to_numpy()
FE_hyper_nonlinear = df_overall_sel['Final_error_hyper_nonlinear'].to_numpy()
# 중앙값, 평균, 90% percentile 산정 및 저장
statistic.append([np.mean(RMSE_hyper_original),
np.median(RMSE_hyper_original),
np.percentile(RMSE_hyper_original, 90)])
statistic.append([np.mean(RMSE_hyper_nonlinear),
np.median(RMSE_hyper_nonlinear),
np.percentile(RMSE_hyper_nonlinear, 90)])
statistic.append([np.mean(FE_hyper_original),
np.median(FE_hyper_original),
np.percentile(FE_hyper_original, 90)])
statistic.append([np.mean(FE_hyper_nonlinear),
np.median(FE_hyper_nonlinear),
np.percentile(FE_hyper_nonlinear, 90)])
# 그래프 설정 (2 by 2)
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize = (8, 8))
# 그래프 제목 설정
fig.suptitle('Histograms: ' + str(data_usage) +
'% of Settlement Data Used in the Final Step')
# 각 Subplot의 제목 설정
ax1.set_xlabel('RMSE (Original Hyperbolic) (cm)')
ax2.set_xlabel('RMSE (Nonlinear Hyperbolic) (cm)')
ax3.set_xlabel('FE (Original Hyperbolic) (cm)')
ax4.set_xlabel('FE (Nonliner Hyperbolic) (cm)')
# 각 subplot에 히스토그램 작성
ax1.hist(RMSE_hyper_original, 5, density=True, facecolor='r', edgecolor='k', alpha=0.75)
ax2.hist(RMSE_hyper_nonlinear, 5, density=True, facecolor='b', edgecolor='k', alpha=0.75)
ax3.hist(FE_hyper_original, 5, density=True, facecolor='r', edgecolor='k', alpha=0.75)
ax4.hist(FE_hyper_nonlinear, 5, density=True, facecolor='b', edgecolor='k', alpha=0.75)
# 각 subplot을 포함한 리스트 설정
axes = [ax1, ax2, ax3, ax4]
# 공통 사항 적용
for i in range(len(axes)):
ax = axes[i]
ax.text(10, 0.4, 'Mean = ' + "{:0.2f}".format(statistic[count * 4 + i][0]) + '\n' +
'Median = ' + "{:0.2f}".format(statistic[count * 4 + i][1]) + '\n' +
'90% Percentile = ' + "{:0.2f}".format(statistic[count * 4 + i][2]))
ax.set_ylabel("Probability")
ax.grid(color="gray", alpha=.5, linestyle='--')
ax.tick_params(direction='in')
ax.set_xlim(0, 50)
ax.set_ylim(0, 0.5)
count = count + 1
# 그래프 저장 (SVG 및 PNG)
plt.savefig('error_analysis/error_nonstep(%i percent).png' % data_usage,
bbox_inches='tight')
data_usages = range(20, 100, 10)
statistic = np.array(statistic)
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(3, 2, figsize = (8, 12))
fig.suptitle("Original Hyperbolic vs. Nonlinear Hyperbolic")
# mean rmse
ax1.set_ylabel('Mean(RMSE) (cm)')
ax1.plot(data_usages, statistic[0::4, 0], label = 'Original Hyperbolic')
ax1.plot(data_usages, statistic[1::4, 0], label = 'Nonlinear Hyperbolic')
ax1.legend()
# mean fe
ax2.set_ylabel('Mean(FE) (cm)')
ax2.plot(data_usages, statistic[2::4, 0])
ax2.plot(data_usages, statistic[3::4, 0])
# median rmse
ax3.set_ylabel('Median(RMSE) (cm)')
ax3.plot(data_usages, statistic[0::4, 1])
ax3.plot(data_usages, statistic[1::4, 1])
# median fe
ax4.set_ylabel('Median(FE) (cm)')
ax4.plot(data_usages, statistic[2::4, 1])
ax4.plot(data_usages, statistic[3::4, 1])
# percentile rmse
ax5.set_ylabel('90% Percentile(RMSE) (cm)')
ax5.plot(data_usages, statistic[0::4, 2])
ax5.plot(data_usages, statistic[1::4, 2])
# percentile fe
ax6.set_ylabel('90% Percentile(FE) (cm)')
ax6.plot(data_usages, statistic[2::4, 2])
ax6.plot(data_usages, statistic[3::4, 2])
axes = [ax1, ax2, ax3, ax4, ax5, ax6]
# 공통 사항 적용
for ax in axes:
ax.set_xlabel("Data Usage (%)")
ax.grid(color="gray", alpha=.5, linestyle='--')
ax.tick_params(direction='in')
ax.set_xlim(0, 100)
ax.set_ylim(0, 50)
# 그래프 저장 (SVG 및 PNG)
plt.savefig('error_analysis/error_overall.png', bbox_inches='tight')
'''
데이터 구조: Error_multi_step.csv
'File', 'Data_usage',
'RMSE_hyper_original', 'RMSE_hyper_nonlinear', 'RMSE_step',
'Final_error_hyper_original', 'Final_error_hyper_nonlinear', 'Final_error_step'
'''
df_multi_step = pd.read_csv('Error_multi_step.csv', encoding='euc-kr')
# 통계량 저장소
# 열 mean / median / percentile
# 행 RMSE (O) / RMSE (NL) / RMSE(S) / FE (O) / FE (NL) / FE (S)
statistic2 =[]
count = 0
# 최종 성토 단계에서 각 침하 데이터 사용 영역에 대해서 다음을 수행
for data_usage in range(20, 100, 10):
# 전체 Error 분석을 위한 Dataframe 설정
df_multi_step_sel = df_multi_step.loc[df_multi_step['Data_usage'] == data_usage]
# RMSE 및 FE를 불러서 메모리에 저장
RMSE_hyper_original = df_multi_step_sel['RMSE_hyper_original'].to_numpy()
RMSE_hyper_nonlinear = df_multi_step_sel['RMSE_hyper_nonlinear'].to_numpy()
RMSE_step = df_multi_step_sel['RMSE_step'].to_numpy()
FE_hyper_original = df_multi_step_sel['Final_error_hyper_original'].to_numpy()
FE_hyper_nonlinear = df_multi_step_sel['Final_error_hyper_nonlinear'].to_numpy()
FE_step = df_multi_step_sel['Final_error_step'].to_numpy()
# 중앙값, 평균, 90% percentile 산정 및 저장
statistic2.append([np.mean(RMSE_hyper_original),
np.median(RMSE_hyper_original),
np.percentile(RMSE_hyper_original, 90)])
statistic2.append([np.mean(RMSE_hyper_nonlinear),
np.median(RMSE_hyper_nonlinear),
np.percentile(RMSE_hyper_nonlinear, 90)])
statistic2.append([np.mean(RMSE_step),
np.median(RMSE_step),
np.percentile(RMSE_step, 90)])
statistic2.append([np.mean(FE_hyper_original),
np.median(FE_hyper_original),
np.percentile(FE_hyper_original, 90)])
statistic2.append([np.mean(FE_hyper_nonlinear),
np.median(FE_hyper_nonlinear),
np.percentile(FE_hyper_nonlinear, 90)])
statistic2.append([np.mean(FE_step),
np.median(FE_step),
np.percentile(FE_step, 90)])
# 그래프 설정 (2 by 2)
fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, figsize = (12, 8))
# 그래프 제목 설정
fig.suptitle('Histograms: ' + str(data_usage) +
'% of Settlement Data Used in the Final Step')
# 각 Subplot의 제목 설정
ax1.set_xlabel('RMSE (Original Hyperbolic) (cm)')
ax2.set_xlabel('RMSE (Nonlinear Hyperbolic) (cm)')
ax3.set_xlabel('RMSE (Step) (cm)')
ax4.set_xlabel('FE (Original Hyperbolic) (cm)')
ax5.set_xlabel('FE (Nonliner Hyperbolic) (cm)')
ax6.set_xlabel('FE (Step) (cm)')
# 각 subplot에 히스토그램 작성
ax1.hist(RMSE_hyper_original, 5, density=True, facecolor='r', edgecolor='k', alpha=0.75)
ax2.hist(RMSE_hyper_nonlinear, 5, density=True, facecolor='b', edgecolor='k', alpha=0.75)
ax3.hist(RMSE_step, 5, density=True, facecolor='g', edgecolor='k', alpha=0.75)
ax4.hist(FE_hyper_original, 5, density=True, facecolor='r', edgecolor='k', alpha=0.75)
ax5.hist(FE_hyper_nonlinear, 5, density=True, facecolor='b', edgecolor='k', alpha=0.75)
ax6.hist(FE_step, 5, density=True, facecolor='g', edgecolor='k', alpha=0.75)
# 각 subplot을 포함한 리스트 설정
axes = [ax1, ax2, ax3, ax4, ax5, ax6]
# 공통 사항 적용
for i in range(len(axes)):
ax = axes[i]
ax.text(10, 0.4, 'Mean = ' + "{:0.2f}".format(statistic2[count * 6 + i][0]) + '\n' +
'Median = ' + "{:0.2f}".format(statistic2[count * 6 + i][1]) + '\n' +
'90% Percentile = ' + "{:0.2f}".format(statistic2[count * 6 + i][2]))
ax.set_ylabel("Probability")
ax.grid(color="gray", alpha=.5, linestyle='--')
ax.tick_params(direction='in')
ax.set_xlim(0, 50)
ax.set_ylim(0, 0.5)
count = count + 1
# 그래프 저장 (SVG 및 PNG)
plt.savefig('error_analysis/error_step(%i percent).png' % data_usage,
bbox_inches='tight')
data_usages = range(20, 100, 10)
statistic2 = np.array(statistic2)
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(3, 2, figsize = (8, 12))
fig.suptitle("Hyperbolic vs. Step loading")
# mean rmse
ax1.set_ylabel('Mean(RMSE) (cm)')
ax1.plot(data_usages, statistic2[0::6, 0], label = 'Original Hyperbolic')
ax1.plot(data_usages, statistic2[1::6, 0], label = 'Nonlinear Hyperbolic')
ax1.plot(data_usages, statistic2[2::6, 0], color='k', label = 'Step Loading')
ax1.legend()
# mean fe
ax2.set_ylabel('Mean(FE) (cm)')
ax2.plot(data_usages, statistic2[3::6, 0])
ax2.plot(data_usages, statistic2[4::6, 0])
ax2.plot(data_usages, statistic2[5::6, 0], color='k')
# median rmse
ax3.set_ylabel('Median(RMSE) (cm)')
ax3.plot(data_usages, statistic2[0::6, 1])
ax3.plot(data_usages, statistic2[1::6, 1])
ax3.plot(data_usages, statistic2[2::6, 1], color='k')
# median fe
ax4.set_ylabel('Median(FE) (cm)')
ax4.plot(data_usages, statistic2[3::6, 1])
ax4.plot(data_usages, statistic2[4::6, 1])
ax4.plot(data_usages, statistic2[5::6, 1], color='k')
# percentile rmse
ax5.set_ylabel('90% Percentile(RMSE) (cm)')
ax5.plot(data_usages, statistic2[0::6, 2])
ax5.plot(data_usages, statistic2[1::6, 2])
ax5.plot(data_usages, statistic2[2::6, 2], color='k')
# percentile fe
ax6.set_ylabel('90% Percentile(FE) (cm)')
ax6.plot(data_usages, statistic2[3::6, 2])
ax6.plot(data_usages, statistic2[4::6, 2])
ax6.plot(data_usages, statistic2[5::6, 2], color='k')
axes = [ax1, ax2, ax3, ax4, ax5, ax6]
# 공통 사항 적용
for ax in axes:
ax.set_xlabel("Data Usage (%)")
ax.grid(color="gray", alpha=.5, linestyle='--')
ax.tick_params(direction='in')
ax.set_xlim(0, 100)
ax.set_ylim(0, 50)
# 그래프 저장 (SVG 및 PNG)
plt.savefig('error_analysis/error_step.png', bbox_inches='tight')

View File

@ -2,11 +2,17 @@ import settle_prediction_steps_main
import pandas as pd import pandas as pd
import os import os
input_dir = 'data' input_dir = 'data_1'
output_dir = 'output' output_dir = 'output_1'
input_files = [] input_files = []
df = pd.DataFrame(columns=['File', 'Data_usage', df_overall = pd.DataFrame(columns=['File', 'Data_usage',
'RMSE_hyper_original',
'RMSE_hyper_nonlinear',
'Final_error_hyper_original',
'Final_error_hyper_nonlinear'])
df_multi_step = pd.DataFrame(columns=['File', 'Data_usage',
'RMSE_hyper_original', 'RMSE_hyper_original',
'RMSE_hyper_nonlinear', 'RMSE_hyper_nonlinear',
'RMSE_step', 'RMSE_step',
@ -14,16 +20,33 @@ df = pd.DataFrame(columns=['File', 'Data_usage',
'Final_error_hyper_nonlinear', 'Final_error_hyper_nonlinear',
'Final_error_step']) 'Final_error_step'])
for (root, directories, files) in os.walk(input_dir): for (root, directories, files) in os.walk(input_dir):
for file in files: for file in files:
file_path = os.path.join(root, file) file_path = os.path.join(root, file)
input_files.append(file_path) input_files.append(file_path)
for input_file in input_files: for input_file in input_files:
for i in range(20, 100, 20): for i in range(20, 100, 10):
ERROR = settle_prediction_steps_main.run_settle_prediction(input_file,
output_dir, i, 100, False, False)
df.loc[len(df.index)] = [input_file, i, ERROR[0], ERROR[1], ERROR[2],
ERROR[3], ERROR[4], ERROR[5]]
df.to_csv('Error.csv') RETURN_VALUES = settle_prediction_steps_main.\
run_settle_prediction(input_file, output_dir, i, 100, False, False)
df_overall.loc[len(df_overall.index)] = [input_file, i,
RETURN_VALUES[0],
RETURN_VALUES[1],
RETURN_VALUES[3],
RETURN_VALUES[4]]
if RETURN_VALUES[6]:
df_multi_step.loc[len(df_overall.index)] = [input_file, i,
RETURN_VALUES[0],
RETURN_VALUES[1],
RETURN_VALUES[2],
RETURN_VALUES[3],
RETURN_VALUES[4],
RETURN_VALUES[5]]
# 에러 파일 출력
df_overall.to_csv('Error_overall.csv')
df_multi_step.to_csv('Error_multi_step.csv')

View File

@ -1,144 +0,0 @@
Time,Settle,Surcharge
0,0,3.52
2,1.2,3.52
5,3.1,3.52
8,5.4,3.52
15,9.6,3.52
21,21.5,4.835
26,28.7,4.835
28,31.4,4.835
34,38.3,4.835
37,41.7,4.835
40,44.6,4.835
43,47.3,4.835
47,51.2,4.835
50,54.1,4.835
54,57.3,4.835
57,59.7,4.835
61,63,4.835
64,64.7,4.835
68,66.9,4.835
70,68.2,4.835
72,69.6,4.835
75,71.5,4.835
76,72.2,4.835
77,72.9,4.835
78,73.5,4.835
79,74.1,4.835
82,75.3,4.835
83,75.7,4.835
84,76.1,4.835
85,76.5,4.835
89,78.4,4.835
90,78.9,4.835
92,79.9,4.835
96,81.8,4.835
98,82.8,4.835
99,83.2,4.835
105,85.8,4.835
106,86.2,4.835
107,86.6,4.835
110,87.8,4.835
112,88.6,4.835
114,89.4,4.835
117,90.6,4.835
119,91.4,4.835
121,92.2,4.835
128,95.2,4.835
131,96.4,4.835
134,97.6,4.835
138,99,4.835
140,99.6,4.835
147,101.4,4.835
149,102,4.835
153,103.2,4.835
155,103.8,4.835
159,105.1,4.835
162,106,4.835
166,110.4,6.05
167,111.3,6.05
168,112.2,6.05
169,113.1,6.05
170,114,6.05
173,116.7,6.05
174,117.5,6.05
177,119.9,6.05
181,123.1,6.05
182,123.9,6.05
183,124.7,6.05
184,125.4,6.05
187,127.5,6.05
188,128.1,6.05
189,128.7,6.05
190,129.2,6.05
191,129.7,6.05
194,131.2,6.05
195,131.7,6.05
196,132.2,6.05
197,132.7,6.05
198,133.1,6.05
201,134.3,6.05
202,134.7,6.05
203,135.1,6.05
204,135.5,6.05
205,135.9,6.05
208,137.1,6.05
211,138.3,6.05
215,139.5,6.05
217,140.1,6.05
219,140.7,6.05
222,141.6,6.05
225,142.5,6.05
229,143.7,6.05
233,144.9,6.05
237,146.1,6.05
239,146.7,6.05
243,147.9,6.05
246,148.8,6.05
250,150,6.05
253,150.9,6.05
257,152.1,6.05
261,153.3,6.05
264,154.2,6.05
267,155.1,6.05
271,155.9,6.05
275,156.7,6.05
278,157.3,6.05
281,157.9,6.05
285,158.7,6.05
292,160.1,6.05
295,160.7,6.05
299,161.5,6.05
302,162.1,6.05
306,162.9,6.05
309,163.5,6.05
313,164.3,6.05
316,164.9,6.05
320,165.7,6.05
324,166.1,6.05
327,166.4,6.05
329,166.6,6.05
334,167.1,6.05
337,167.4,6.05
341,167.8,6.05
344,168.1,6.05
348,168.5,6.05
351,168.8,6.05
355,169.2,6.05
358,169.5,6.05
362,169.9,6.05
369,170.6,6.05
372,170.9,6.05
376,171.3,6.05
380,171.7,6.05
383,172,6.05
386,172.3,6.05
390,172.7,6.05
393,173,6.05
397,173.4,6.05
400,173.7,6.05
404,174,6.05
407,174.2,6.05
411,174.5,6.05
414,174.7,6.05
422,175.2,6.05
1 Time Settle Surcharge
2 0 0 3.52
3 2 1.2 3.52
4 5 3.1 3.52
5 8 5.4 3.52
6 15 9.6 3.52
7 21 21.5 4.835
8 26 28.7 4.835
9 28 31.4 4.835
10 34 38.3 4.835
11 37 41.7 4.835
12 40 44.6 4.835
13 43 47.3 4.835
14 47 51.2 4.835
15 50 54.1 4.835
16 54 57.3 4.835
17 57 59.7 4.835
18 61 63 4.835
19 64 64.7 4.835
20 68 66.9 4.835
21 70 68.2 4.835
22 72 69.6 4.835
23 75 71.5 4.835
24 76 72.2 4.835
25 77 72.9 4.835
26 78 73.5 4.835
27 79 74.1 4.835
28 82 75.3 4.835
29 83 75.7 4.835
30 84 76.1 4.835
31 85 76.5 4.835
32 89 78.4 4.835
33 90 78.9 4.835
34 92 79.9 4.835
35 96 81.8 4.835
36 98 82.8 4.835
37 99 83.2 4.835
38 105 85.8 4.835
39 106 86.2 4.835
40 107 86.6 4.835
41 110 87.8 4.835
42 112 88.6 4.835
43 114 89.4 4.835
44 117 90.6 4.835
45 119 91.4 4.835
46 121 92.2 4.835
47 128 95.2 4.835
48 131 96.4 4.835
49 134 97.6 4.835
50 138 99 4.835
51 140 99.6 4.835
52 147 101.4 4.835
53 149 102 4.835
54 153 103.2 4.835
55 155 103.8 4.835
56 159 105.1 4.835
57 162 106 4.835
58 166 110.4 6.05
59 167 111.3 6.05
60 168 112.2 6.05
61 169 113.1 6.05
62 170 114 6.05
63 173 116.7 6.05
64 174 117.5 6.05
65 177 119.9 6.05
66 181 123.1 6.05
67 182 123.9 6.05
68 183 124.7 6.05
69 184 125.4 6.05
70 187 127.5 6.05
71 188 128.1 6.05
72 189 128.7 6.05
73 190 129.2 6.05
74 191 129.7 6.05
75 194 131.2 6.05
76 195 131.7 6.05
77 196 132.2 6.05
78 197 132.7 6.05
79 198 133.1 6.05
80 201 134.3 6.05
81 202 134.7 6.05
82 203 135.1 6.05
83 204 135.5 6.05
84 205 135.9 6.05
85 208 137.1 6.05
86 211 138.3 6.05
87 215 139.5 6.05
88 217 140.1 6.05
89 219 140.7 6.05
90 222 141.6 6.05
91 225 142.5 6.05
92 229 143.7 6.05
93 233 144.9 6.05
94 237 146.1 6.05
95 239 146.7 6.05
96 243 147.9 6.05
97 246 148.8 6.05
98 250 150 6.05
99 253 150.9 6.05
100 257 152.1 6.05
101 261 153.3 6.05
102 264 154.2 6.05
103 267 155.1 6.05
104 271 155.9 6.05
105 275 156.7 6.05
106 278 157.3 6.05
107 281 157.9 6.05
108 285 158.7 6.05
109 292 160.1 6.05
110 295 160.7 6.05
111 299 161.5 6.05
112 302 162.1 6.05
113 306 162.9 6.05
114 309 163.5 6.05
115 313 164.3 6.05
116 316 164.9 6.05
117 320 165.7 6.05
118 324 166.1 6.05
119 327 166.4 6.05
120 329 166.6 6.05
121 334 167.1 6.05
122 337 167.4 6.05
123 341 167.8 6.05
124 344 168.1 6.05
125 348 168.5 6.05
126 351 168.8 6.05
127 355 169.2 6.05
128 358 169.5 6.05
129 362 169.9 6.05
130 369 170.6 6.05
131 372 170.9 6.05
132 376 171.3 6.05
133 380 171.7 6.05
134 383 172 6.05
135 386 172.3 6.05
136 390 172.7 6.05
137 393 173 6.05
138 397 173.4 6.05
139 400 173.7 6.05
140 404 174 6.05
141 407 174.2 6.05
142 411 174.5 6.05
143 414 174.7 6.05
144 422 175.2 6.05

View File

@ -1,125 +0,0 @@
Time,Settle,Surcharge
0,0,1.5
5,17.4,1.5
7,23.9,1.5
11,32.2,1.5
14,41.7,1.5
21,64.1,1.5
28,72.5,1.5
35,78.8,1.5
42,93.3,1.5
48,102.5,1.5
53,108,3.002
54,109.2,3.002
55,110.4,3.002
56,111.6,3.002
59,117.3,3.002
60,119.2,3.002
61,121.1,3.002
62,122.7,3.002
67,130.2,3.002
68,131.9,3.002
69,133.6,3.002
70,135.4,3.002
74,141.4,3.002
75,142.9,3.002
76,144.4,3.002
77,146.2,3.002
80,149.2,3.002
81,150.2,3.002
82,151.2,3.002
83,152.2,3.002
91,162.8,3.002
98,170,3.002
105,177,3.002
112,182.4,3.002
115,185,3.002
117,186.5,3.002
118,187.3,3.002
122,202.9,4.095
124,210.5,4.095
125,214.5,4.095
126,218.6,4.095
129,222.4,4.095
130,223.7,4.095
131,225,4.095
132,226.3,4.095
133,227.5,4.095
136,231.7,4.095
137,233.1,4.095
138,234.5,4.095
139,235.9,4.095
140,237.3,4.095
143,240.7,4.095
147,245.5,4.095
151,249.7,4.095
154,252.8,4.095
158,257.8,4.095
161,261.1,4.095
164,264.1,4.095
168,268,4.095
172,272.2,4.095
175,275.5,4.095
181,283.5,4.095
192,293.5,4.095
195,296.2,4.095
199,301.3,4.095
202,304.6,4.095
209,311.1,4.095
216,316,4.095
223,322.3,4.095
230,326.5,4.095
237,331.6,4.095
244,336.5,4.095
251,341.2,4.095
258,346.1,4.095
266,350.9,4.095
273,354,4.095
280,356,4.095
286,358,4.095
294,360.9,4.095
300,363,5.256
301,363.4,5.256
304,365.8,5.256
305,366.5,5.256
306,367.2,5.256
307,367.9,5.256
308,368.5,5.256
311,369.5,5.256
312,369.8,5.256
313,370.1,5.256
314,370.4,5.256
327,377.4,5.256
329,378.5,5.256
336,381.8,5.256
343,385.5,5.256
350,388.4,5.256
357,391.1,5.256
364,394.1,5.256
371,397.1,5.256
377,399.5,5.256
385,401.4,5.256
388,402.3,5.256
389,402.6,5.256
390,402.9,5.256
391,403.2,5.256
392,403.5,5.256
395,404.4,5.256
397,405,5.256
398,405.3,5.256
402,406.5,5.256
404,407.1,5.256
405,407.4,5.256
406,407.6,5.256
409,408.2,5.256
411,408.6,5.256
419,410.2,5.256
420,410.5,5.256
425,411.5,5.256
426,411.7,5.256
434,413.3,5.256
440,414.5,5.256
447,415.9,5.256
455,417.5,5.256
461,418.7,5.256
468,420,5.256
1 Time Settle Surcharge
2 0 0 1.5
3 5 17.4 1.5
4 7 23.9 1.5
5 11 32.2 1.5
6 14 41.7 1.5
7 21 64.1 1.5
8 28 72.5 1.5
9 35 78.8 1.5
10 42 93.3 1.5
11 48 102.5 1.5
12 53 108 3.002
13 54 109.2 3.002
14 55 110.4 3.002
15 56 111.6 3.002
16 59 117.3 3.002
17 60 119.2 3.002
18 61 121.1 3.002
19 62 122.7 3.002
20 67 130.2 3.002
21 68 131.9 3.002
22 69 133.6 3.002
23 70 135.4 3.002
24 74 141.4 3.002
25 75 142.9 3.002
26 76 144.4 3.002
27 77 146.2 3.002
28 80 149.2 3.002
29 81 150.2 3.002
30 82 151.2 3.002
31 83 152.2 3.002
32 91 162.8 3.002
33 98 170 3.002
34 105 177 3.002
35 112 182.4 3.002
36 115 185 3.002
37 117 186.5 3.002
38 118 187.3 3.002
39 122 202.9 4.095
40 124 210.5 4.095
41 125 214.5 4.095
42 126 218.6 4.095
43 129 222.4 4.095
44 130 223.7 4.095
45 131 225 4.095
46 132 226.3 4.095
47 133 227.5 4.095
48 136 231.7 4.095
49 137 233.1 4.095
50 138 234.5 4.095
51 139 235.9 4.095
52 140 237.3 4.095
53 143 240.7 4.095
54 147 245.5 4.095
55 151 249.7 4.095
56 154 252.8 4.095
57 158 257.8 4.095
58 161 261.1 4.095
59 164 264.1 4.095
60 168 268 4.095
61 172 272.2 4.095
62 175 275.5 4.095
63 181 283.5 4.095
64 192 293.5 4.095
65 195 296.2 4.095
66 199 301.3 4.095
67 202 304.6 4.095
68 209 311.1 4.095
69 216 316 4.095
70 223 322.3 4.095
71 230 326.5 4.095
72 237 331.6 4.095
73 244 336.5 4.095
74 251 341.2 4.095
75 258 346.1 4.095
76 266 350.9 4.095
77 273 354 4.095
78 280 356 4.095
79 286 358 4.095
80 294 360.9 4.095
81 300 363 5.256
82 301 363.4 5.256
83 304 365.8 5.256
84 305 366.5 5.256
85 306 367.2 5.256
86 307 367.9 5.256
87 308 368.5 5.256
88 311 369.5 5.256
89 312 369.8 5.256
90 313 370.1 5.256
91 314 370.4 5.256
92 327 377.4 5.256
93 329 378.5 5.256
94 336 381.8 5.256
95 343 385.5 5.256
96 350 388.4 5.256
97 357 391.1 5.256
98 364 394.1 5.256
99 371 397.1 5.256
100 377 399.5 5.256
101 385 401.4 5.256
102 388 402.3 5.256
103 389 402.6 5.256
104 390 402.9 5.256
105 391 403.2 5.256
106 392 403.5 5.256
107 395 404.4 5.256
108 397 405 5.256
109 398 405.3 5.256
110 402 406.5 5.256
111 404 407.1 5.256
112 405 407.4 5.256
113 406 407.6 5.256
114 409 408.2 5.256
115 411 408.6 5.256
116 419 410.2 5.256
117 420 410.5 5.256
118 425 411.5 5.256
119 426 411.7 5.256
120 434 413.3 5.256
121 440 414.5 5.256
122 447 415.9 5.256
123 455 417.5 5.256
124 461 418.7 5.256
125 468 420 5.256

View File

@ -1,125 +0,0 @@
Time,Settle,Surcharge
0,0,1.5
5,6.7,1.5
8,10.2,1.5
14,20.5,1.5
22,28.2,1.5
29,43.2,1.5
35,47.4,1.5
43,57.1,1.5
50,63.5,1.5
57,70.5,1.5
64,77.7,1.5
70,83.5,1.5
78,92.4,1.5
85,97.6,1.5
92,103.5,1.5
99,108.4,1.5
106,113.49,1.5
113,118.4,1.5
116,118.4,2.871
120,122.8,2.871
124,123,2.871
125,125.2,2.871
126,127.4,2.871
127,129.6,2.871
130,132.9,2.871
131,134,2.871
132,135.1,2.871
133,136.2,2.871
144,145.6,2.871
145,146.5,2.871
146,147.4,2.871
147,148.3,2.871
154,153.4,2.871
161,159.2,2.871
168,163.9,2.871
175,169.8,2.871
182,174.9,2.871
189,180.7,2.871
196,185.4,2.871
203,191.2,2.871
210,196.1,3.606
218,201.7,3.606
225,205.9,3.606
232,210.1,3.606
238,213.7,3.606
246,217.9,3.606
253,221.2,3.606
260,225.2,3.606
266,228.4,3.606
281,239.2,3.606
288,243.1,3.606
295,246.6,3.606
302,250.4,3.606
309,254,3.606
316,257.3,3.606
323,260.5,3.606
329,263.3,3.606
337,266.4,3.606
344,269,3.606
350,271.2,3.606
358,274,3.606
361,275.2,3.606
363,276,3.606
371,279.2,3.606
372,279.6,3.606
377,281.1,3.606
378,281.4,3.606
383,282.9,3.606
384,283.2,3.606
385,283.5,3.606
386,283.8,3.606
389,284.7,3.606
390,285,3.606
391,285.4,3.606
392,285.8,3.606
397,287.4,3.606
398,287.7,3.606
399,288,3.606
403,289.2,3.606
404,289.5,3.606
405,289.8,3.606
406,290.1,3.606
407,290.4,3.606
410,291,3.606
411,291.2,3.606
413,291.6,3.606
420,293.1,3.606
421,293.4,3.606
424,294.3,3.606
431,296.4,3.606
435,298.4,4.896
438,302,4.896
441,305.1,4.896
445,309.4,4.896
448,313.7,4.896
455,320.1,4.896
462,325.4,4.896
469,330.9,4.896
473,334.3,4.896
475,335.8,4.896
476,336.5,4.896
477,337.2,4.896
480,338.8,4.896
481,339.3,4.896
483,340.3,4.896
488,343.6,4.896
497,348.6,4.896
502,351.6,4.896
504,352.3,4.896
509,354.8,4.896
512,356.1,4.896
516,358.7,4.896
518,359,4.896
525,362.6,4.896
530,364.6,4.896
532,365.7,4.896
540,368.4,4.896
544,369.4,4.896
547,370.2,4.896
550,371,4.896
553,372.4,4.896
560,374.1,4.896
565,375.2,4.896
568,375.5,4.896
1 Time Settle Surcharge
2 0 0 1.5
3 5 6.7 1.5
4 8 10.2 1.5
5 14 20.5 1.5
6 22 28.2 1.5
7 29 43.2 1.5
8 35 47.4 1.5
9 43 57.1 1.5
10 50 63.5 1.5
11 57 70.5 1.5
12 64 77.7 1.5
13 70 83.5 1.5
14 78 92.4 1.5
15 85 97.6 1.5
16 92 103.5 1.5
17 99 108.4 1.5
18 106 113.49 1.5
19 113 118.4 1.5
20 116 118.4 2.871
21 120 122.8 2.871
22 124 123 2.871
23 125 125.2 2.871
24 126 127.4 2.871
25 127 129.6 2.871
26 130 132.9 2.871
27 131 134 2.871
28 132 135.1 2.871
29 133 136.2 2.871
30 144 145.6 2.871
31 145 146.5 2.871
32 146 147.4 2.871
33 147 148.3 2.871
34 154 153.4 2.871
35 161 159.2 2.871
36 168 163.9 2.871
37 175 169.8 2.871
38 182 174.9 2.871
39 189 180.7 2.871
40 196 185.4 2.871
41 203 191.2 2.871
42 210 196.1 3.606
43 218 201.7 3.606
44 225 205.9 3.606
45 232 210.1 3.606
46 238 213.7 3.606
47 246 217.9 3.606
48 253 221.2 3.606
49 260 225.2 3.606
50 266 228.4 3.606
51 281 239.2 3.606
52 288 243.1 3.606
53 295 246.6 3.606
54 302 250.4 3.606
55 309 254 3.606
56 316 257.3 3.606
57 323 260.5 3.606
58 329 263.3 3.606
59 337 266.4 3.606
60 344 269 3.606
61 350 271.2 3.606
62 358 274 3.606
63 361 275.2 3.606
64 363 276 3.606
65 371 279.2 3.606
66 372 279.6 3.606
67 377 281.1 3.606
68 378 281.4 3.606
69 383 282.9 3.606
70 384 283.2 3.606
71 385 283.5 3.606
72 386 283.8 3.606
73 389 284.7 3.606
74 390 285 3.606
75 391 285.4 3.606
76 392 285.8 3.606
77 397 287.4 3.606
78 398 287.7 3.606
79 399 288 3.606
80 403 289.2 3.606
81 404 289.5 3.606
82 405 289.8 3.606
83 406 290.1 3.606
84 407 290.4 3.606
85 410 291 3.606
86 411 291.2 3.606
87 413 291.6 3.606
88 420 293.1 3.606
89 421 293.4 3.606
90 424 294.3 3.606
91 431 296.4 3.606
92 435 298.4 4.896
93 438 302 4.896
94 441 305.1 4.896
95 445 309.4 4.896
96 448 313.7 4.896
97 455 320.1 4.896
98 462 325.4 4.896
99 469 330.9 4.896
100 473 334.3 4.896
101 475 335.8 4.896
102 476 336.5 4.896
103 477 337.2 4.896
104 480 338.8 4.896
105 481 339.3 4.896
106 483 340.3 4.896
107 488 343.6 4.896
108 497 348.6 4.896
109 502 351.6 4.896
110 504 352.3 4.896
111 509 354.8 4.896
112 512 356.1 4.896
113 516 358.7 4.896
114 518 359 4.896
115 525 362.6 4.896
116 530 364.6 4.896
117 532 365.7 4.896
118 540 368.4 4.896
119 544 369.4 4.896
120 547 370.2 4.896
121 550 371 4.896
122 553 372.4 4.896
123 560 374.1 4.896
124 565 375.2 4.896
125 568 375.5 4.896

View File

@ -1,183 +0,0 @@
Time,Settle,Surcharge
0,0,1.33
4,7.7,1.33
8,10.7,1.33
11,20.4,1.33
15,29.5,1.33
17,36.5,1.33
22,42.9,1.33
24,48,1.33
29,53.4,1.33
31,58.6,1.33
36,66,1.33
38,69.5,1.33
42,70.9,1.33
45,77.7,1.33
50,83.7,1.33
53,89.2,1.33
56,92.5,1.33
59,95.4,1.33
63,96.6,1.33
66,97.4,1.33
70,98.7,1.33
73,100.6,1.33
77,109.0583333,1.33
80,115.825,1.33
84,120.9,1.33
87,122.6,1.33
90,125.7,1.33
94,129.7,1.33
97,132.5,1.33
100,135,1.33
104,138,1.33
107,141.5,1.33
120,154.4,1.33
122,156.2,1.33
125,159.3,1.33
128,162.2,1.33
132,164.4,1.33
135,167.3,1.33
139,170.6,1.33
142,173.3090909,1.33
147,175.5,1.33
150,177.6,1.33
154,181.4,1.33
156,183.8,1.33
160,185.6,1.33
163,188,1.33
167,190.7,1.33
170,192.6,1.33
175,193.7,1.33
178,195.2,1.33
181,199.9,1.33
184,201.9,1.33
188,204,1.33
191,205.9,1.33
195,208.3,1.33
198,210.3,1.33
203,212.6,1.33
207,214.3,1.33
213,216.7,1.33
216,218.5,1.33
221,220.6,1.33
224,222.3,1.33
227,224.6,1.33
230,226.4,1.33
234,228.1,1.33
238,230.4,1.33
241,232.3,1.33
245,233.9,1.33
248,235,1.33
252,236.9,1.33
255,237.7,1.33
258,239.2,1.33
261,240.5,1.33
265,242.2,1.33
268,243.2,1.33
272,244.4,1.33
275,245.6,1.33
279,247.1,1.33
282,248,1.33
286,249.3,1.33
289,250.3,1.33
293,252.1,1.33
296,253.5,1.33
300,255.4,1.33
303,256.9,1.33
308,259.2,1.33
311,262.9,1.33
315,268.3,1.33
318,272.9,1.33
322,279.5,1.33
325,284.6,1.33
328,288.7,1.33
331,290.7,1.33
338,292.9,1.33
342,294.6,2.287
345,295.9,2.287
349,297.7,2.287
352,299.2,2.287
357,306.5,3.92
361,311.9,3.92
364,317,3.92
367,321.9,3.92
371,326.4,3.92
374,329.9,3.92
378,333.6,3.92
381,336,3.92
384,337.6,3.92
387,338.9,3.92
391,343.3,3.92
394,346.1,3.92
398,349.6,3.92
401,352.7,3.92
405,355.6,3.92
408,357.5,3.92
413,360.8,3.92
415,362.1,3.92
420,366.1,3.92
423,368.3,3.92
426,370.7,3.92
429,372.7,3.92
433,375.4,3.92
436,377.4,3.92
440,380,3.92
444,382.3,3.92
447,383.8,3.92
450,385.5,3.92
455,388.2,3.92
457,389.1,3.92
461,391.5,3.92
464,393.2,3.92
471,397.3,3.92
475,399.8,3.92
479,402.1,3.92
483,404.2,3.92
486,405.6,3.92
489,407.3,3.92
492,408.3,5.2
496,412.3,5.2
499,415.7,5.2
504,418.7,5.2
507,421,5.2
511,423.7,5.2
514,426,5.2
517,428.6,5.2
520,430.8,5.2
525,433.7,5.2
528,436.1,5.2
532,437,5.2
534,438.3,5.2
538,440.8,5.2
541,442,5.2
545,444.1,5.2
548,445.6,5.2
552,448.1,5.2
555,449.7,5.2
559,451.9,5.2
562,454.7,5.2
566,456.5,5.2
569,458.4,5.2
573,460.2,5.2
576,461.5,5.2
580,463.2,5.2
583,464.3,5.2
588,468.2,5.2
590,470.3,5.2
595,470.7,5.2
598,470.9,5.2
602,471.9,5.2
605,472.6,5.2
609,473.8,5.2
612,474.6,5.2
615,475.2,5.2
618,475.8,5.2
623,476.8,5.2
626,477.6,5.2
629,478.3,5.2
632,479.2,5.2
636,480.6,5.2
639,480.6,5.2
643,480.7,5.2
646,480.7,5.2
650,480.7,5.2
1 Time Settle Surcharge
2 0 0 1.33
3 4 7.7 1.33
4 8 10.7 1.33
5 11 20.4 1.33
6 15 29.5 1.33
7 17 36.5 1.33
8 22 42.9 1.33
9 24 48 1.33
10 29 53.4 1.33
11 31 58.6 1.33
12 36 66 1.33
13 38 69.5 1.33
14 42 70.9 1.33
15 45 77.7 1.33
16 50 83.7 1.33
17 53 89.2 1.33
18 56 92.5 1.33
19 59 95.4 1.33
20 63 96.6 1.33
21 66 97.4 1.33
22 70 98.7 1.33
23 73 100.6 1.33
24 77 109.0583333 1.33
25 80 115.825 1.33
26 84 120.9 1.33
27 87 122.6 1.33
28 90 125.7 1.33
29 94 129.7 1.33
30 97 132.5 1.33
31 100 135 1.33
32 104 138 1.33
33 107 141.5 1.33
34 120 154.4 1.33
35 122 156.2 1.33
36 125 159.3 1.33
37 128 162.2 1.33
38 132 164.4 1.33
39 135 167.3 1.33
40 139 170.6 1.33
41 142 173.3090909 1.33
42 147 175.5 1.33
43 150 177.6 1.33
44 154 181.4 1.33
45 156 183.8 1.33
46 160 185.6 1.33
47 163 188 1.33
48 167 190.7 1.33
49 170 192.6 1.33
50 175 193.7 1.33
51 178 195.2 1.33
52 181 199.9 1.33
53 184 201.9 1.33
54 188 204 1.33
55 191 205.9 1.33
56 195 208.3 1.33
57 198 210.3 1.33
58 203 212.6 1.33
59 207 214.3 1.33
60 213 216.7 1.33
61 216 218.5 1.33
62 221 220.6 1.33
63 224 222.3 1.33
64 227 224.6 1.33
65 230 226.4 1.33
66 234 228.1 1.33
67 238 230.4 1.33
68 241 232.3 1.33
69 245 233.9 1.33
70 248 235 1.33
71 252 236.9 1.33
72 255 237.7 1.33
73 258 239.2 1.33
74 261 240.5 1.33
75 265 242.2 1.33
76 268 243.2 1.33
77 272 244.4 1.33
78 275 245.6 1.33
79 279 247.1 1.33
80 282 248 1.33
81 286 249.3 1.33
82 289 250.3 1.33
83 293 252.1 1.33
84 296 253.5 1.33
85 300 255.4 1.33
86 303 256.9 1.33
87 308 259.2 1.33
88 311 262.9 1.33
89 315 268.3 1.33
90 318 272.9 1.33
91 322 279.5 1.33
92 325 284.6 1.33
93 328 288.7 1.33
94 331 290.7 1.33
95 338 292.9 1.33
96 342 294.6 2.287
97 345 295.9 2.287
98 349 297.7 2.287
99 352 299.2 2.287
100 357 306.5 3.92
101 361 311.9 3.92
102 364 317 3.92
103 367 321.9 3.92
104 371 326.4 3.92
105 374 329.9 3.92
106 378 333.6 3.92
107 381 336 3.92
108 384 337.6 3.92
109 387 338.9 3.92
110 391 343.3 3.92
111 394 346.1 3.92
112 398 349.6 3.92
113 401 352.7 3.92
114 405 355.6 3.92
115 408 357.5 3.92
116 413 360.8 3.92
117 415 362.1 3.92
118 420 366.1 3.92
119 423 368.3 3.92
120 426 370.7 3.92
121 429 372.7 3.92
122 433 375.4 3.92
123 436 377.4 3.92
124 440 380 3.92
125 444 382.3 3.92
126 447 383.8 3.92
127 450 385.5 3.92
128 455 388.2 3.92
129 457 389.1 3.92
130 461 391.5 3.92
131 464 393.2 3.92
132 471 397.3 3.92
133 475 399.8 3.92
134 479 402.1 3.92
135 483 404.2 3.92
136 486 405.6 3.92
137 489 407.3 3.92
138 492 408.3 5.2
139 496 412.3 5.2
140 499 415.7 5.2
141 504 418.7 5.2
142 507 421 5.2
143 511 423.7 5.2
144 514 426 5.2
145 517 428.6 5.2
146 520 430.8 5.2
147 525 433.7 5.2
148 528 436.1 5.2
149 532 437 5.2
150 534 438.3 5.2
151 538 440.8 5.2
152 541 442 5.2
153 545 444.1 5.2
154 548 445.6 5.2
155 552 448.1 5.2
156 555 449.7 5.2
157 559 451.9 5.2
158 562 454.7 5.2
159 566 456.5 5.2
160 569 458.4 5.2
161 573 460.2 5.2
162 576 461.5 5.2
163 580 463.2 5.2
164 583 464.3 5.2
165 588 468.2 5.2
166 590 470.3 5.2
167 595 470.7 5.2
168 598 470.9 5.2
169 602 471.9 5.2
170 605 472.6 5.2
171 609 473.8 5.2
172 612 474.6 5.2
173 615 475.2 5.2
174 618 475.8 5.2
175 623 476.8 5.2
176 626 477.6 5.2
177 629 478.3 5.2
178 632 479.2 5.2
179 636 480.6 5.2
180 639 480.6 5.2
181 643 480.7 5.2
182 646 480.7 5.2
183 650 480.7 5.2

View File

@ -1,128 +0,0 @@
Time,Settle,Surcharge
0,0,1.887
3,41,1.887
6,61.5,1.887
10,73.1,1.887
13,81.6,1.887
17,86.9,1.887
20,91.9,1.887
23,96.7,1.887
26,101.6,1.887
30,107.7,2.94
33,113,2.94
37,119.4,2.94
40,122.8,2.94
44,128.4,2.94
47,131.9,2.94
52,139.5,2.94
54,140.5,2.94
59,148,2.94
62,151,2.94
65,153.8,2.94
68,156.6,2.94
72,160,2.94
75,162.5,2.94
79,166,2.94
83,169.1,2.94
86,172,2.94
89,174.7,2.94
94,180.3,2.94
96,182.1,2.94
100,185.5,2.94
103,188.4,2.94
110,195.8,2.94
114,198.7,2.94
118,201.1,2.94
122,205,2.94
125,206.9,2.94
128,209.3,2.94
131,211.8,2.94
135,214.2,2.94
138,216.2,2.94
143,217.4,2.94
146,218.3,2.94
150,219.1,2.94
153,219.9,2.94
156,220.9,2.94
159,222,2.94
164,227.7,2.94
167,230.7,2.94
171,234.8,3.48
173,236.5,3.48
177,239.7,3.48
180,241.8,3.48
184,243.9,3.48
187,246.3,3.48
191,249.6,3.48
194,252.1,3.48
198,255.5,3.48
201,258.9,3.48
205,261.2,3.48
208,263.4,3.48
212,265.8,3.48
215,267.1,3.48
219,268.9,3.48
222,270.2,3.48
227,273.4,3.48
229,275,3.48
234,277.3,3.48
237,278.1,3.48
241,280,3.48
244,281.2,3.48
248,283.2,3.48
251,284.6,3.48
254,286.1,3.48
257,287.5,3.48
262,289.5,3.48
265,290.7,3.48
268,292,3.48
271,293.2,3.48
275,294.7,3.48
278,295.3,3.48
282,296.3,3.48
285,296.7,3.48
289,297.6,3.48
292,298.5,3.48
296,299.8,3.48
299,300.6,3.48
303,302.2,3.48
306,303.5,3.48
310,312.8,5.608
313,318.1,5.608
317,322.8,6.794
320,328.9,6.794
324,335.3,6.794
328,340.5,6.794
331,342.9,6.794
334,345.5,6.794
339,348,6.794
342,350.6,6.794
345,353.1,6.794
348,355.6,6.794
352,358.9,6.794
355,361,6.794
362,365.6,6.794
367,369,6.794
370,370.5,6.794
373,372.2,6.794
376,373.8,6.794
381,376.4,6.794
384,378.5,6.794
387,380.4,6.794
390,382.4,6.794
394,385.8,6.794
397,388,6.794
402,389.9,6.794
405,390.9,6.794
409,392.6,6.794
412,394,6.794
415,396.7,6.794
418,397.5,6.794
422,398.7,6.794
425,399.1,6.794
429,399.8,6.794
432,400.9,6.794
436,403.6,6.794
439,405.6,6.794
443,408.2,6.794
446,409.4,6.794
1 Time Settle Surcharge
2 0 0 1.887
3 3 41 1.887
4 6 61.5 1.887
5 10 73.1 1.887
6 13 81.6 1.887
7 17 86.9 1.887
8 20 91.9 1.887
9 23 96.7 1.887
10 26 101.6 1.887
11 30 107.7 2.94
12 33 113 2.94
13 37 119.4 2.94
14 40 122.8 2.94
15 44 128.4 2.94
16 47 131.9 2.94
17 52 139.5 2.94
18 54 140.5 2.94
19 59 148 2.94
20 62 151 2.94
21 65 153.8 2.94
22 68 156.6 2.94
23 72 160 2.94
24 75 162.5 2.94
25 79 166 2.94
26 83 169.1 2.94
27 86 172 2.94
28 89 174.7 2.94
29 94 180.3 2.94
30 96 182.1 2.94
31 100 185.5 2.94
32 103 188.4 2.94
33 110 195.8 2.94
34 114 198.7 2.94
35 118 201.1 2.94
36 122 205 2.94
37 125 206.9 2.94
38 128 209.3 2.94
39 131 211.8 2.94
40 135 214.2 2.94
41 138 216.2 2.94
42 143 217.4 2.94
43 146 218.3 2.94
44 150 219.1 2.94
45 153 219.9 2.94
46 156 220.9 2.94
47 159 222 2.94
48 164 227.7 2.94
49 167 230.7 2.94
50 171 234.8 3.48
51 173 236.5 3.48
52 177 239.7 3.48
53 180 241.8 3.48
54 184 243.9 3.48
55 187 246.3 3.48
56 191 249.6 3.48
57 194 252.1 3.48
58 198 255.5 3.48
59 201 258.9 3.48
60 205 261.2 3.48
61 208 263.4 3.48
62 212 265.8 3.48
63 215 267.1 3.48
64 219 268.9 3.48
65 222 270.2 3.48
66 227 273.4 3.48
67 229 275 3.48
68 234 277.3 3.48
69 237 278.1 3.48
70 241 280 3.48
71 244 281.2 3.48
72 248 283.2 3.48
73 251 284.6 3.48
74 254 286.1 3.48
75 257 287.5 3.48
76 262 289.5 3.48
77 265 290.7 3.48
78 268 292 3.48
79 271 293.2 3.48
80 275 294.7 3.48
81 278 295.3 3.48
82 282 296.3 3.48
83 285 296.7 3.48
84 289 297.6 3.48
85 292 298.5 3.48
86 296 299.8 3.48
87 299 300.6 3.48
88 303 302.2 3.48
89 306 303.5 3.48
90 310 312.8 5.608
91 313 318.1 5.608
92 317 322.8 6.794
93 320 328.9 6.794
94 324 335.3 6.794
95 328 340.5 6.794
96 331 342.9 6.794
97 334 345.5 6.794
98 339 348 6.794
99 342 350.6 6.794
100 345 353.1 6.794
101 348 355.6 6.794
102 352 358.9 6.794
103 355 361 6.794
104 362 365.6 6.794
105 367 369 6.794
106 370 370.5 6.794
107 373 372.2 6.794
108 376 373.8 6.794
109 381 376.4 6.794
110 384 378.5 6.794
111 387 380.4 6.794
112 390 382.4 6.794
113 394 385.8 6.794
114 397 388 6.794
115 402 389.9 6.794
116 405 390.9 6.794
117 409 392.6 6.794
118 412 394 6.794
119 415 396.7 6.794
120 418 397.5 6.794
121 422 398.7 6.794
122 425 399.1 6.794
123 429 399.8 6.794
124 432 400.9 6.794
125 436 403.6 6.794
126 439 405.6 6.794
127 443 408.2 6.794
128 446 409.4 6.794

View File

@ -1,158 +0,0 @@
Time,Settle,Surcharge
0,0,3
9,14.4,3
14,31.4,3
24,33.3,3
27,34.1,3
28,34.5,3
29,34.7,3
31,34.9,3
34,35.3,3
36,35.7,3
38,36,3.5
41,36.3,3.5
43,45.8,3.5
45,50.6,3.5
48,55.3,3.5
50,79.1,3.5
52,91,3.5
55,96.9,3.5
57,99.9,3.5
59,102.9,3.5
66,134,3.5
72,142,3.5
78,150.7,3.5
83,154.2,3.5
84,155.9,3.5
86,157.7,3.5
90,160,3.5
92,161.1,3.5
94,162.3,3.5
97,160.3,3.5
98,159.3,3.5
99,158.8,3.5
101,158.3,3.5
104,158.6,3.5
106,158.6,3.5
108,158.6,3.5
111,158.7,3.5
113,158.9,3.5
115,160.2,3.5
118,160.8,3.5
120,161.5,3.5
121,162.8,3.5
122,164.2,3.5
123,165.5,3.5
125,166.9,3.5
127,169.7,3.5
127,176.6,4
128,180.1,4
129,181.9,4
132,182.7,4
134,183.6,4
135,199.5,5.11
136,207.5,5.11
136,211.5,5.11
139,213.5,5.11
142,215.5,5.11
143,219.8,5.11
146,221.9,5.11
148,224,5.11
150,226.9,5.11
153,228.4,5.11
155,229.8,5.11
157,236.7,5.11
160,243.1,5.11
161,249.1,5.11
162,257.3,5.11
163,261.6,5.11
164,263.7,5.11
167,264.7,5.11
169,265.8,5.11
171,272.2,5.11
174,275.4,5.11
176,278.6,5.11
177,281.8,5.11
178,283.4,5.11
181,284.2,5.11
182,285,5.11
183,288.3,5.11
184,289.9,5.11
185,290.7,5.11
188,291.1,5.11
190,291.3,5.11
192,291.5,5.11
195,294.7,5.11
197,297.9,5.11
202,304.3,5.11
210,309.3,5.11
217,314.4,5.11
224,321,5.11
231,327.8,5.11
246,336.9,5.11
253,341.1,5.11
259,344.7,5.11
267,350.4,5.11
273,354.5,5.11
280,359,5.11
287,363.3,5.11
293,366.9,5.11
301,371.1,5.11
308,374.7,5.11
318,379.7,5.11
325,382.3,5.11
332,384.8,5.11
339,387.3,5.11
346,389.8,5.11
352,392.1,5.11
356,395.3,5.11
364,401.5,5.11
373,408.3,5.11
380,410.8,5.11
386,413.5,5.11
392,416.1,5.11
399,419,5.11
407,420.3,5.11
412,421,5.11
420,422,5.11
428,423,5.11
435,428.8,5.11
440,431.4,5.11
442,432.2,5.11
444,433.7,5.61
447,435,5.61
448,435.3,5.61
457,437.8,5.61
464,439.6,5.61
470,440.8,5.61
476,441.8,5.61
484,443.2,5.61
491,444.3,5.61
498,448.8,5.61
505,453.3,5.61
513,457.3,5.61
520,459.5,5.61
524,460.6,5.61
531,461.9,5.61
538,463.1,5.61
546,464.4,5.61
552,465.4,5.61
560,466.7,5.61
569,468,5.61
576,469.1,5.61
581,469.8,5.61
591,471.3,5.61
598,472.4,5.61
605,473.5,5.61
612,474.5,5.61
619,475.3,5.61
625,476.1,5.61
631,476.9,5.61
640,478,5.61
644,478.4,5.61
651,479,5.61
658,479.6,5.61
664,480.1,5.61
672,480.7,5.61
680,481.2,5.61
689,481.7,5.61
1 Time Settle Surcharge
2 0 0 3
3 9 14.4 3
4 14 31.4 3
5 24 33.3 3
6 27 34.1 3
7 28 34.5 3
8 29 34.7 3
9 31 34.9 3
10 34 35.3 3
11 36 35.7 3
12 38 36 3.5
13 41 36.3 3.5
14 43 45.8 3.5
15 45 50.6 3.5
16 48 55.3 3.5
17 50 79.1 3.5
18 52 91 3.5
19 55 96.9 3.5
20 57 99.9 3.5
21 59 102.9 3.5
22 66 134 3.5
23 72 142 3.5
24 78 150.7 3.5
25 83 154.2 3.5
26 84 155.9 3.5
27 86 157.7 3.5
28 90 160 3.5
29 92 161.1 3.5
30 94 162.3 3.5
31 97 160.3 3.5
32 98 159.3 3.5
33 99 158.8 3.5
34 101 158.3 3.5
35 104 158.6 3.5
36 106 158.6 3.5
37 108 158.6 3.5
38 111 158.7 3.5
39 113 158.9 3.5
40 115 160.2 3.5
41 118 160.8 3.5
42 120 161.5 3.5
43 121 162.8 3.5
44 122 164.2 3.5
45 123 165.5 3.5
46 125 166.9 3.5
47 127 169.7 3.5
48 127 176.6 4
49 128 180.1 4
50 129 181.9 4
51 132 182.7 4
52 134 183.6 4
53 135 199.5 5.11
54 136 207.5 5.11
55 136 211.5 5.11
56 139 213.5 5.11
57 142 215.5 5.11
58 143 219.8 5.11
59 146 221.9 5.11
60 148 224 5.11
61 150 226.9 5.11
62 153 228.4 5.11
63 155 229.8 5.11
64 157 236.7 5.11
65 160 243.1 5.11
66 161 249.1 5.11
67 162 257.3 5.11
68 163 261.6 5.11
69 164 263.7 5.11
70 167 264.7 5.11
71 169 265.8 5.11
72 171 272.2 5.11
73 174 275.4 5.11
74 176 278.6 5.11
75 177 281.8 5.11
76 178 283.4 5.11
77 181 284.2 5.11
78 182 285 5.11
79 183 288.3 5.11
80 184 289.9 5.11
81 185 290.7 5.11
82 188 291.1 5.11
83 190 291.3 5.11
84 192 291.5 5.11
85 195 294.7 5.11
86 197 297.9 5.11
87 202 304.3 5.11
88 210 309.3 5.11
89 217 314.4 5.11
90 224 321 5.11
91 231 327.8 5.11
92 246 336.9 5.11
93 253 341.1 5.11
94 259 344.7 5.11
95 267 350.4 5.11
96 273 354.5 5.11
97 280 359 5.11
98 287 363.3 5.11
99 293 366.9 5.11
100 301 371.1 5.11
101 308 374.7 5.11
102 318 379.7 5.11
103 325 382.3 5.11
104 332 384.8 5.11
105 339 387.3 5.11
106 346 389.8 5.11
107 352 392.1 5.11
108 356 395.3 5.11
109 364 401.5 5.11
110 373 408.3 5.11
111 380 410.8 5.11
112 386 413.5 5.11
113 392 416.1 5.11
114 399 419 5.11
115 407 420.3 5.11
116 412 421 5.11
117 420 422 5.11
118 428 423 5.11
119 435 428.8 5.11
120 440 431.4 5.11
121 442 432.2 5.11
122 444 433.7 5.61
123 447 435 5.61
124 448 435.3 5.61
125 457 437.8 5.61
126 464 439.6 5.61
127 470 440.8 5.61
128 476 441.8 5.61
129 484 443.2 5.61
130 491 444.3 5.61
131 498 448.8 5.61
132 505 453.3 5.61
133 513 457.3 5.61
134 520 459.5 5.61
135 524 460.6 5.61
136 531 461.9 5.61
137 538 463.1 5.61
138 546 464.4 5.61
139 552 465.4 5.61
140 560 466.7 5.61
141 569 468 5.61
142 576 469.1 5.61
143 581 469.8 5.61
144 591 471.3 5.61
145 598 472.4 5.61
146 605 473.5 5.61
147 612 474.5 5.61
148 619 475.3 5.61
149 625 476.1 5.61
150 631 476.9 5.61
151 640 478 5.61
152 644 478.4 5.61
153 651 479 5.61
154 658 479.6 5.61
155 664 480.1 5.61
156 672 480.7 5.61
157 680 481.2 5.61
158 689 481.7 5.61

View File

@ -10,8 +10,6 @@ The methodologies used are 1) superposition of time-settlement curves
and 2) nonlinear regression for hyperbolic curves. and 2) nonlinear regression for hyperbolic curves.
""" """
# ================= # =================
# Import 섹션 # Import 섹션
# ================= # =================
@ -23,7 +21,6 @@ import matplotlib.pyplot as plt
from scipy.optimize import least_squares from scipy.optimize import least_squares
# ================= # =================
# Function 섹션 # Function 섹션
# ================= # =================
@ -32,14 +29,17 @@ from scipy.optimize import least_squares
def generate_data_hyper(px, pt): def generate_data_hyper(px, pt):
return pt / (px[0] * pt + px[1]) return pt / (px[0] * pt + px[1])
# 회귀식과 측정치와의 잔차 반환 (비선형 쌍곡선) # 회귀식과 측정치와의 잔차 반환 (비선형 쌍곡선)
def fun_hyper_nonlinear(px, pt, py): def fun_hyper_nonlinear(px, pt, py):
return pt / (px[0] * pt + px[1]) - py return pt / (px[0] * pt + px[1]) - py
# 회귀식과 측정치와의 잔차 반환 (기존 쌍곡선) # 회귀식과 측정치와의 잔차 반환 (기존 쌍곡선)
def fun_hyper_original(px, pt, py): def fun_hyper_original(px, pt, py):
return px[0] * pt + px[1] - pt / py return px[0] * pt + px[1] - pt / py
# RMSE 산정 # RMSE 산정
def fun_rmse(py1, py2): def fun_rmse(py1, py2):
mse = np.square(np.subtract(py1, py2)).mean() mse = np.square(np.subtract(py1, py2)).mean()
@ -48,8 +48,11 @@ def fun_rmse(py1, py2):
def run_settle_prediction(input_file, output_dir, def run_settle_prediction(input_file, output_dir,
final_step_predict_percent, additional_predict_percent, final_step_predict_percent, additional_predict_percent,
plot_show, print_values): plot_show,
print_values,
run_original_hyperbolic='True',
run_nonlinear_hyperbolic='True',
run_step_prediction='True'):
# ==================== # ====================
# 파일 읽기, 데이터 설정 # 파일 읽기, 데이터 설정
# ==================== # ====================
@ -58,7 +61,7 @@ def run_settle_prediction(input_file, output_dir,
print("Working on " + input_file) print("Working on " + input_file)
# CSV 파일 읽기 # CSV 파일 읽기
data = pd.read_csv(input_file, encoding='euc-kr') data = pd.read_csv(input_file, encoding='euc-kr')
# 시간, 침하량, 성토고 배열 생성 # 시간, 침하량, 성토고 배열 생성
time = data['Time'].to_numpy() time = data['Time'].to_numpy()
@ -67,12 +70,9 @@ def run_settle_prediction(input_file, output_dir,
# 데이터 닫기 # 데이터 닫기
# 마지막 계측 데이터 index + 1 파악 # 마지막 계측 데이터 index + 1 파악
final_index = time.size final_index = time.size
# ================= # =================
# 성토 단계 구분 # 성토 단계 구분
# ================= # =================
@ -94,28 +94,23 @@ def run_settle_prediction(input_file, output_dir,
# 만일 성토고의 변화가 있을 경우, # 만일 성토고의 변화가 있을 경우,
if surcharge[index] != current_surcharge: if surcharge[index] != current_surcharge:
step_end_index.append(index) step_end_index.append(index)
step_start_index.append(index) step_start_index.append(index)
current_surcharge = surcharge[index] current_surcharge = surcharge[index]
# 마지막 성토 단계 끝 index 추가 # 마지막 성토 단계 끝 index 추가
step_end_index.append(len(surcharge) - 1) step_end_index.append(len(surcharge) - 1)
# ================= # =================
# 성토 단계 조정 # 성토 단계 조정
# ================= # =================
# 다음 경우를 제외하고 해석을 수행할 필요가 있음 # 성토고 유지 기간이 매우 짧을 경우, 해석 단계에서 제외
# 성토고 유지 기간이 매우 짧을 경우
# 성토고 유지 기간 중 계측 데이터 수가 작을 경우
# # 조정 성토 시작 및 끝 인덱스 리스트 초기화
step_start_index_adjust = [] step_start_index_adjust = []
step_end_index_adjust = [] step_end_index_adjust = []
# 각 성토 단계 별로 분석
for i in range(0, len(step_start_index)): for i in range(0, len(step_start_index)):
# 현 단계 성토 시작일 / 끝일 파악 # 현 단계 성토 시작일 / 끝일 파악
@ -126,20 +121,22 @@ def run_settle_prediction(input_file, output_dir,
step_span = step_end_date - step_start_date step_span = step_end_date - step_start_date
step_data_num = step_end_index[i] - step_start_index[i] + 1 step_data_num = step_end_index[i] - step_start_index[i] + 1
if (step_span > 50 and step_data_num > 15): # 성토고 유지일 및 데이터 개수 기준 적용
if step_span > 30 and step_data_num > 5:
step_start_index_adjust.append((step_start_index[i])) step_start_index_adjust.append((step_start_index[i]))
step_end_index_adjust.append((step_end_index[i])) step_end_index_adjust.append((step_end_index[i]))
# 성토 시작 및 끝 인덱스 리스트 업데이트
step_start_index = step_start_index_adjust step_start_index = step_start_index_adjust
step_end_index = step_end_index_adjust step_end_index = step_end_index_adjust
# 침하 예측을 수행할 단계 설정 (현재 끝에서 2단계 이용)
step_start_index = step_start_index[-2:]
step_end_index = step_end_index[-2:]
# 성토 단계 횟수 파악 및 저장 # 성토 단계 횟수 파악 및 저장
num_steps = len(step_start_index) num_steps = len(step_start_index)
# =========================== # ===========================
# 최종 단계 데이터 사용 범위 조정 # 최종 단계 데이터 사용 범위 조정
# =========================== # ===========================
@ -165,8 +162,6 @@ def run_settle_prediction(input_file, output_dir,
final_step_monitor_end_index = step_end_index[num_steps - 1] final_step_monitor_end_index = step_end_index[num_steps - 1]
step_end_index[num_steps - 1] = final_step_predict_end_index step_end_index[num_steps - 1] = final_step_predict_end_index
# ================= # =================
# 추가 예측 구간 반영 # 추가 예측 구간 반영
# ================= # =================
@ -189,8 +184,6 @@ def run_settle_prediction(input_file, output_dir,
# 마지막 인덱스값 재조정 # 마지막 인덱스값 재조정
final_index = time.size final_index = time.size
# ============================= # =============================
# Settlement Prediction (Step) # Settlement Prediction (Step)
# ============================= # =============================
@ -234,7 +227,6 @@ def run_settle_prediction(input_file, output_dir,
# 회귀분석 시행 # 회귀분석 시행
res_lsq_hyper_nonlinear \ res_lsq_hyper_nonlinear \
= least_squares(fun_hyper_nonlinear, x0, = least_squares(fun_hyper_nonlinear, x0,
bounds=((0, 0),(np.inf, np.inf)),
args=(tm_this_step, sm_this_step)) args=(tm_this_step, sm_this_step))
# 쌍곡선 계수 저장 및 출력 # 쌍곡선 계수 저장 및 출력
@ -249,18 +241,16 @@ def run_settle_prediction(input_file, output_dir,
sp_step[step_start_index[i]:final_index] = \ sp_step[step_start_index[i]:final_index] = \
sp_step[step_start_index[i]:final_index] + sp_to_end_update + s0_this_step sp_step[step_start_index[i]:final_index] + sp_to_end_update + s0_this_step
# ========================================================= # =========================================================
# Settlement prediction (nonliner and original hyperbolic) # Settlement prediction (nonliner and original hyperbolic)
# ========================================================= # =========================================================
# 성토 마지막 데이터 추출 # 성토 마지막 데이터 추출
tm_hyper = time[step_start_index[num_steps-1]:step_end_index[num_steps-1]] tm_hyper = time[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
sm_hyper = settle[step_start_index[num_steps-1]:step_end_index[num_steps-1]] sm_hyper = settle[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
# 현재 단계 시작 부터 끝까지 시간 데이터 추출 # 현재 단계 시작 부터 끝까지 시간 데이터 추출
time_hyper = time[step_start_index[num_steps-1]:final_index] time_hyper = time[step_start_index[num_steps - 1]:final_index]
# 초기 시점 및 침하량 산정 # 초기 시점 및 침하량 산정
t0_hyper = tm_hyper[0] t0_hyper = tm_hyper[0]
@ -300,8 +290,6 @@ def run_settle_prediction(input_file, output_dir,
sp_hyper_original = sp_hyper_original + s0_hyper sp_hyper_original = sp_hyper_original + s0_hyper
time_hyper = time_hyper + t0_hyper time_hyper = time_hyper + t0_hyper
# ========== # ==========
# 에러 산정 # 에러 산정
# ========== # ==========
@ -327,23 +315,20 @@ def run_settle_prediction(input_file, output_dir,
# RMSE 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선) # RMSE 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선)
if print_values: if print_values:
print("RMSE (Nonlinear Hyper + Step): %0.3f" %RMSE_step) print("RMSE (Nonlinear Hyper + Step): %0.3f" % RMSE_step)
print("RMSE (Nonlinear Hyperbolic): %0.3f" %RMSE_hyper_nonlinear) print("RMSE (Nonlinear Hyperbolic): %0.3f" % RMSE_hyper_nonlinear)
print("RMSE (Original Hyperbolic): %0.3f" %RMSE_hyper_original) print("RMSE (Original Hyperbolic): %0.3f" % RMSE_hyper_original)
# (최종 계측 침하량 - 예측 침하량) 계산 # (최종 계측 침하량 - 예측 침하량) 계산
final_error_step = np.abs(settle[-1] - sp_step_rmse[-1])
final_error_step = settle[-1] - sp_step_rmse[-1] final_error_hyper_nonlinear = np.abs(settle[-1] - sp_hyper_nonlinear_rmse[-1])
final_error_hyper_nonlinear = settle[-1] - sp_hyper_nonlinear_rmse[-1] final_error_hyper_original = np.abs(settle[-1] - sp_hyper_original_rmse[-1])
final_error_hyper_original = settle[-1] - sp_hyper_original_rmse[-1]
# (최종 계측 침하량 - 예측 침하량) 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선) # (최종 계측 침하량 - 예측 침하량) 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선)
if print_values: if print_values:
print("Error in Final Settlement (Nonlinear Hyper + Step): %0.3f" %final_error_step) print("Error in Final Settlement (Nonlinear Hyper + Step): %0.3f" % final_error_step)
print("Error in Final Settlement (Nonlinear Hyperbolic): %0.3f" %final_error_hyper_nonlinear) print("Error in Final Settlement (Nonlinear Hyperbolic): %0.3f" % final_error_hyper_nonlinear)
print("Error in Final Settlement (Original Hyperbolic): %0.3f" %final_error_hyper_original) print("Error in Final Settlement (Original Hyperbolic): %0.3f" % final_error_hyper_original)
# ===================== # =====================
# Post-Processing # Post-Processing
@ -351,7 +336,7 @@ def run_settle_prediction(input_file, output_dir,
# 그래프 크기, 서브 그래프 개수 및 비율 설정 # 그래프 크기, 서브 그래프 개수 및 비율 설정
fig, axes = plt.subplots(2, 1, figsize=(12, 9), fig, axes = plt.subplots(2, 1, figsize=(12, 9),
gridspec_kw={'height_ratios':[1,3]}) gridspec_kw={'height_ratios': [1, 3]})
# 성토고 그래프 표시 # 성토고 그래프 표시
axes[0].plot(time, surcharge, color='black', label='surcharge height') axes[0].plot(time, surcharge, color='black', label='surcharge height')
@ -364,7 +349,8 @@ def run_settle_prediction(input_file, output_dir,
# 계측 및 예측 침하량 표시 # 계측 및 예측 침하량 표시
axes[1].scatter(time[0:settle.size], -settle, s=50, facecolors='white', edgecolors='black', label='measured data') axes[1].scatter(time[0:settle.size], -settle, s=50, facecolors='white', edgecolors='black', label='measured data')
axes[1].plot(time[step_start_index[0]:], -sp_step[step_start_index[0]:], linestyle='-', color='blue', label='Nonlinear + Step Loading') axes[1].plot(time[step_start_index[0]:], -sp_step[step_start_index[0]:], linestyle='-', color='blue',
label='Nonlinear + Step Loading')
axes[1].plot(time_hyper, -sp_hyper_nonlinear, axes[1].plot(time_hyper, -sp_hyper_nonlinear,
linestyle='--', color='green', label='Nonlinear Hyperbolic') linestyle='--', color='green', label='Nonlinear Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_original, axes[1].plot(time_hyper, -sp_hyper_original,
@ -478,8 +464,8 @@ def run_settle_prediction(input_file, output_dir,
plt.title(filename + ": up to %i%% data used in the final step" % final_step_predict_percent) plt.title(filename + ": up to %i%% data used in the final step" % final_step_predict_percent)
# 그래프 저장 (SVG 및 PNG) # 그래프 저장 (SVG 및 PNG)
#plt.savefig(output_dir + '/' + filename +' %i percent (SVG).svg' %final_step_predict_percent, bbox_inches='tight') # plt.savefig(output_dir + '/' + filename +' %i percent (SVG).svg' %final_step_predict_percent, bbox_inches='tight')
plt.savefig(output_dir + '/' + filename +' %i percent (PNG).png' %final_step_predict_percent, bbox_inches='tight') plt.savefig(output_dir + '/' + filename + ' %i percent (PNG).png' % final_step_predict_percent, bbox_inches='tight')
# 그래프 출력 # 그래프 출력
if plot_show: if plot_show:
@ -492,9 +478,16 @@ def run_settle_prediction(input_file, output_dir,
print("Settlement prediction is done for " + filename + print("Settlement prediction is done for " + filename +
" with " + str(final_step_predict_percent) + "% data usage") " with " + str(final_step_predict_percent) + "% data usage")
# 산정 에러값 반환 # 단계 성토 고려 여부 표시
is_multi_step = True
if len(step_start_index) == 1:
is_multi_step = False
# 반환
return [RMSE_hyper_original, RMSE_hyper_nonlinear, RMSE_step, return [RMSE_hyper_original, RMSE_hyper_nonlinear, RMSE_step,
final_error_hyper_original, final_error_hyper_nonlinear, final_error_hyper_original, final_error_hyper_nonlinear,
final_error_step] final_error_step, is_multi_step]
run_settle_prediction('data/1_S-8.csv', 'output', 80, 100, False, False)
#run_settle_prediction('data_1/1_SP-16.csv', 'output',
# 80, 100, True, True)