Compare commits

..

10 Commits

Author SHA1 Message Date
thkim 2b3e70b3b6 . 2025-12-23 15:23:32 +09:00
sanginnwoo 27453ed2a9 From SW's laptop
- DB에서 데이터 읽은 코드
 - 침하예측 수행 후 DB에 데이터 밀어넣는 코드
2023-01-16 00:43:18 +09:00
sanginnwoo a97dd09a68 From Spectre 2023-01-11 18:02:32 +09:00
sanginnwoo 261f1d8e95 From SW's laptop 2022-12-17 20:20:18 +09:00
sanginnwoo a748d20de2 From SW's laptop 2022-12-07 23:31:23 +09:00
sanginnwoo 7ba5eefc4c From SW's laptop 2022-12-05 23:31:19 +09:00
sanginnwoo ec16712498 From SW's laptop 2022-12-05 16:41:58 +09:00
sanginnwoo a85ca0bf79 From SW's laptop 2022-12-04 02:03:24 +09:00
sanginnwoo 55aa83ba9c From SW's laptop 2022-12-03 16:20:46 +09:00
sanginnwoo 5d2a23b500 From SW's laptop
Addition of Asaoka method
2022-11-01 19:07:39 +09:00
14 changed files with 1902 additions and 460 deletions

View File

@ -0,0 +1,215 @@
"""
Title: Controller
Developer:
Sang Inn Woo, Ph.D. @ Incheon National University
Starting Date: 2022-11-10
"""
import psycopg2 as pg2
import sys
import numpy as np
import settle_prediction_steps_main
import matplotlib.pyplot as plt
import pdb;
'''
apptb_surset01
cons_code: names of monitoring points
apptb_surset02
cons_code: names of monitoring points
amount_cum_sub: accumulated settlement
fill_height: height of surcharge fill
nod: number of date
'''
def settlement_prediction(business_code, cons_code):
# connect the database
#connection = pg2.connect("host=localhost dbname=sgis user=postgres password=postgres port=5434") # local
connection = pg2.connect("host=192.168.10.172 dbname=sgis_new user=sgis password=sgis port=5432") # ICTWay internal
# set cursor
cursor = connection.cursor()
# select monitoring data for the monitoring point
postgres_select_query = """SELECT (amount_cum_sub * -1), fill_height, nod FROM apptb_surset02 WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code + """' ORDER BY nod ASC"""
cursor.execute(postgres_select_query)
monitoring_record = cursor.fetchall()
# initialize time, surcharge, and settlement lists
time = []
surcharge = []
settlement = []
# fill lists
for row in monitoring_record:
settlement.append(float(row[0]))
surcharge.append(float(row[1]))
time.append(float(row[2]))
# convert lists to np arrays
settlement = np.array(settlement)
surcharge = np.array(surcharge)
time = np.array(time)
# run the settlement prediction and get results
results = settle_prediction_steps_main.run_settle_prediction(point_name=cons_code, np_time=time,
np_surcharge=surcharge, np_settlement=settlement,
final_step_predict_percent=90,
additional_predict_percent=300, plot_show=False,
print_values=False, run_original_hyperbolic=True,
run_nonlinear_hyperbolic=True,
run_weighted_nonlinear_hyperbolic=True,
run_asaoka=True, run_step_prediction=True,
asaoka_interval=3)
# prediction method code
# 1: original hyperbolic method (쌍곡선법)
# 2: nonlinear hyperbolic method (비선형 쌍곡선법)
# 3: weighted nonlinear hyperbolic method (가중 비선형 쌍곡선법)
# 4: Asaoka method (아사오카법)
# 5: Step loading (단계성토 고려법)
'''
time_hyper, sp_hyper_original,
time_hyper, sp_hyper_nonlinear,
time_hyper, sp_hyper_weight_nonlinear,
time_asaoka, sp_asaoka,
time[step_start_index[0]:], -sp_step[step_start_index[0]:],
'''
for i in range(5):
# if there are prediction data for the given data point, delete it first
postgres_delete_query = """DELETE FROM apptb_pred02_no""" + str(i + 1) \
+ """ WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code + """'"""
cursor.execute(postgres_delete_query)
connection.commit()
# get time and settlement arrays
time = results[2 * i]
predicted_settlement = results[2 * i + 1]
# for each prediction time
for j in range(len(time)):
# construct insert query
postgres_insert_query \
= """INSERT INTO apptb_pred02_no""" + str(i + 1) + """ """ \
+ """(business_code, cons_code, prediction_progress_days, predicted_settlement, prediction_method) """ \
+ """VALUES (%s, %s, %s, %s, %s)"""
# set data to insert
record_to_insert = (business_code, cons_code, time[j], predicted_settlement[j], i + 1)
# execute the insert query
cursor.execute(postgres_insert_query, record_to_insert)
# commit changes
connection.commit()
def read_database_and_plot(business_code, cons_code):
# connect the database
# connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432")
connection = pg2.connect("host=192.168.0.72 dbname=sgis user=sgis password=sgis port=5432") # ICTWay internal
# set cursor
cursor = connection.cursor()
# select monitoring data for the monitoring point
postgres_select_query = """SELECT * FROM apptb_surset02 WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code + """' ORDER BY nod ASC"""
cursor.execute(postgres_select_query)
monitoring_record = cursor.fetchall()
# initialize time, surcharge, and settlement lists
time_monitored = []
surcharge_monitored = []
settlement_monitored = []
# fill lists
for row in monitoring_record:
time_monitored.append(float(row[2]))
settlement_monitored.append(float(row[6]))
surcharge_monitored.append(float(row[8]))
# convert lists to np arrays
settlement_monitored = np.array(settlement_monitored)
surcharge_monitored = np.array(surcharge_monitored)
time_monitored = np.array(time_monitored)
# prediction method code
# 0: original hyperbolic method
# 1: nonlinear hyperbolic method
# 2: weighted nonlinear hyperbolic method
# 3: Asaoka method
# 4: Step loading
# 5: temp
# temporarily set the prediction method as 0
postgres_select_query = """SELECT prediction_progress_days, predicted_settlement """ \
+ """FROM apptb_pred02_no""" + str(5) \
+ """ WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code \
+ """' ORDER BY prediction_progress_days ASC"""
# select predicted data for the monitoring point
cursor.execute(postgres_select_query)
prediction_record = cursor.fetchall()
# initialize time, surcharge, and settlement lists
time_predicted = []
settlement_predicted = []
# fill lists
for row in prediction_record:
time_predicted.append(float(row[0]))
settlement_predicted.append(float(row[1]))
# convert lists to np arrays
settlement_predicted = np.array(settlement_predicted)
time_predicted = np.array(time_predicted)
# 그래프 크기, 서브 그래프 개수 및 비율 설정
fig, axes = plt.subplots(2, 1, figsize=(8, 6), gridspec_kw={'height_ratios': [1, 3]})
# 성토고 그래프 표시
axes[0].plot(time_monitored, surcharge_monitored, color='black', label='surcharge height')
# 성토고 그래프 설정
axes[0].set_ylabel("Surcharge height (m)", fontsize=10)
axes[0].set_xlim(left=0)
axes[0].set_xlim(right=np.max(time_predicted))
axes[0].grid(color="gray", alpha=.5, linestyle='--')
axes[0].tick_params(direction='in')
# 계측 및 예측 침하량 표시
axes[1].scatter(time_monitored, -settlement_monitored, s=30,
facecolors='white', edgecolors='black', label='measured data')
axes[1].plot(time_predicted, -settlement_predicted,
linestyle='--', color='red', label='Original Hyperbolic')
axes[0].set_ylabel("Settlement (cm)", fontsize=10)
axes[1].set_xlim(left=0)
axes[1].set_xlim(right=np.max(time_predicted))
# script to call: python3 controller.py [business_code] [cons_code]
# for example: python3 controller.py 221222SA0003 CONS001
if __name__ == '__main__':
args = sys.argv[1:]
business_code = args[0]
cons_code = args[1]
settlement_prediction(business_code=business_code, cons_code=cons_code)
print("The settlement prediction is over.")
#read_database_and_plot(business_code=business_code, cons_code=cons_code)
#print("Visualization is over.")

View File

@ -0,0 +1,777 @@
"""
Title: Soft ground settlement prediction
Developer:
Sang Inn Woo, Ph.D. @ Incheon National University
Kwak Taeyoung, Ph.D. @ KICT
Starting Date: 2022-08-11
Abstract:
This main objective of this code is to predict
time vs. (consolidation) settlement curves of soft clay ground.
"""
# =================
# Import 섹션
# =================
import os.path
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import least_squares
from scipy.interpolate import interp1d
# =================
# Function 섹션
# =================
# 주어진 계수를 이용하여 쌍곡선 시간-침하 곡선 반환
def generate_data_hyper(px, pt):
return pt / (px[0] * pt + px[1])
# 주어진 계수를 이용하여 아사오카 시간-침하 곡선 반환
def generate_data_asaoka(px, pt, dt):
return (px[1] / (1 - px[0])) * (1 - (px[0] ** (pt / dt)))
# 회귀식과 측정치와의 잔차 반환 (비선형 쌍곡선)
def fun_hyper_nonlinear(px, pt, py):
return pt / (px[0] * pt + px[1]) - py
# 회귀식과 측정치와의 잔차 반환 (가중 비선형 쌍곡선)
def fun_hyper_weight_nonlinear(px, pt, py, pw):
return (pt / (px[0] * pt + px[1]) - py) * pw
# 회귀식과 측정치와의 잔차 반환 (기존 쌍곡선)
def fun_hyper_original(px, pt, py):
return px[0] * pt + px[1] - pt / py
# 회귀식과 측정치와의 잔차 반환 (아사오카)
def fun_asaoka(px, ps_b, ps_a):
return px[0] * ps_b + px[1] - ps_a
# RMSE 산정
def fun_rmse(py1, py2):
mse = np.square(np.subtract(py1, py2)).mean()
return np.sqrt(mse)
def run_settle_prediction_from_file(input_file, output_dir,
final_step_predict_percent, additional_predict_percent,
plot_show,
print_values,
run_original_hyperbolic='True',
run_nonlinear_hyperbolic='True',
run_weighted_nonlinear_hyperbolic='True',
run_asaoka='True',
run_step_prediction='True',
asaoka_interval=3):
# 현재 파일 이름 출력
print("Working on " + input_file)
# CSV 파일 읽기
data = pd.read_csv(input_file, encoding='euc-kr')
# 시간, 침하량, 성토고 배열 생성
time = data['Time'].to_numpy()
settle = data['Settlement'].to_numpy()
surcharge = data['Surcharge'].to_numpy()
run_settle_prediction(point_name=input_file, np_time=time, np_surcharge=surcharge, np_settlement=settle,
final_step_predict_percent=final_step_predict_percent,
additional_predict_percent=additional_predict_percent, plot_show=plot_show,
print_values=print_values,
run_original_hyperbolic=run_original_hyperbolic,
run_nonlinear_hyperbolic=run_nonlinear_hyperbolic,
run_weighted_nonlinear_hyperbolic=run_weighted_nonlinear_hyperbolic,
run_asaoka=run_asaoka,
run_step_prediction=run_step_prediction,
asaoka_interval=asaoka_interval)
def run_settle_prediction(point_name,
np_time, np_surcharge, np_settlement,
final_step_predict_percent, additional_predict_percent,
plot_show,
print_values,
run_original_hyperbolic='True',
run_nonlinear_hyperbolic='True',
run_weighted_nonlinear_hyperbolic='True',
run_asaoka = 'True',
run_step_prediction='True',
asaoka_interval = 5):
# ====================
# 파일 읽기, 데이터 설정
# ====================
# 시간, 침하량, 성토고 배열 생성
time = np_time
settle = np_settlement
surcharge = np_surcharge
# 마지막 계측 데이터 index + 1 파악
final_index = time.size
# =================
# 성토 단계 구분
# =================
# 성토 단계 시작 index 리스트 초기화
step_start_index = [0]
# 성토 단계 끝 index 리스트 초기화
step_end_index = []
# 현재 성토고 설정
current_surcharge = surcharge[0]
# 단계 시작 시점 초기화
step_start_date = 0
# 모든 시간-성토고 데이터에서 순차적으로 확인
for index in range(len(surcharge)):
# 만일 성토고의 변화가 있을 경우,
if surcharge[index] > current_surcharge*1.05 or surcharge[index] < current_surcharge*0.95:
step_end_index.append(index)
step_start_index.append(index)
current_surcharge = surcharge[index]
# 마지막 성토 단계 끝 index 추가
step_end_index.append(len(surcharge) - 1)
# =================
# 성토 단계 조정
# =================
# 성토고 유지 기간이 매우 짧을 경우, 해석 단계에서 제외
# 조정 성토 시작 및 끝 인덱스 리스트 초기화
step_start_index_adjust = []
step_end_index_adjust = []
# 각 성토 단계 별로 분석
for i in range(0, len(step_start_index)):
# 현 단계 성토 시작일 / 끝일 파악
step_start_date = time[step_start_index[i]]
step_end_date = time[step_end_index[i]]
# 현 성토고 유지 일수 및 데이터 개수 파악
step_span = step_end_date - step_start_date
step_data_num = step_end_index[i] - step_start_index[i] + 1
# 성토고 유지일 및 데이터 개수 기준 적용
if step_span > 30 and step_data_num > 5:
step_start_index_adjust.append((step_start_index[i]))
step_end_index_adjust.append((step_end_index[i]))
# 성토 시작 및 끝 인덱스 리스트 업데이트
step_start_index = step_start_index_adjust
step_end_index = step_end_index_adjust
# 침하 예측을 수행할 단계 설정 (현재 끝에서 2단계 이용)
step_start_index = step_start_index[-2:]
step_end_index = step_end_index[-2:]
# 성토 단계 횟수 파악 및 저장
num_steps = len(step_start_index)
# ===========================
# 최종 단계 데이터 사용 범위 조정
# ===========================
# 데이터 사용 퍼센트에 해당하는 기간 계산
final_step_end_date = time[-1]
final_step_start_date = time[step_start_index[num_steps - 1]]
final_step_period = final_step_end_date - final_step_start_date
final_step_predict_end_date = final_step_start_date + final_step_period * final_step_predict_percent / 100
# 데이터 사용 끝 시점 인덱스 초기화
final_step_predict_end_index = -1
# 데이터 사용 끝 시점 인덱스 검색
count = 0
for day in time:
count = count + 1
if day > final_step_predict_end_date:
final_step_predict_end_index = count - 1
break
# 마지막 성토 단계, 마지막 계측 시점 인덱스 업데이트
final_step_monitor_end_index = step_end_index[num_steps - 1]
step_end_index[num_steps - 1] = final_step_predict_end_index
# =================
# 추가 예측 구간 반영
# =================
# 추가 예측 일 입력 (현재 전체 계측일 * 계수)
add_days = (additional_predict_percent / 100) * time[-1]
# 마지막 성토고 및 마지막 계측일 저장
final_surcharge = surcharge[final_index - 1]
final_time = time[final_index - 1]
# 추가 시간 및 성토고 배열 설정 (100개의 시점 설정)
time_add = np.linspace(final_time + 1, final_time + add_days, 100)
surcharge_add = np.ones(100) * final_surcharge
# 기존 시간 및 성토고 배열에 붙이기
time = np.append(time, time_add)
surcharge = np.append(surcharge, surcharge_add)
# 마지막 인덱스값 재조정
final_index = time.size
# ==========================================
# Settlement Prediction (Step + Hyperbolic)
# ==========================================
# 예측 침하량 초기화
sp_step = np.zeros(time.size)
# 각 단계별로 진행
for i in range(0, num_steps):
# 각 단계별 계측 시점과 계측 침하량 배열 생성
tm_this_step = time[step_start_index[i]:step_end_index[i]]
sm_this_step = settle[step_start_index[i]:step_end_index[i]]
# 이전 단계까지 예측 침하량 중 현재 단계에 해당하는 부분 추출
sp_this_step = sp_step[step_start_index[i]:step_end_index[i]]
# 현재 단계 시작 부터 끝까지 시간 데이터 추출
tm_to_end = time[step_start_index[i]:final_index]
# 기존 예측 침하량에 대한 보정
sm_this_step = sm_this_step - sp_this_step
# 초기 시점 및 침하량 산정
t0_this_step = tm_this_step[0]
s0_this_step = sm_this_step[0]
# 초기 시점에 대한 시간 조정
tm_this_step = tm_this_step - t0_this_step
tm_to_end = tm_to_end - t0_this_step
# 초기 침하량에 대한 침하량 조정
sm_this_step = sm_this_step - s0_this_step
# 침하 곡선 계수 초기화
x0 = np.ones(2)
# 회귀분석 시행
res_lsq_hyper_nonlinear \
= least_squares(fun_hyper_nonlinear, x0,
args=(tm_this_step, sm_this_step))
# 쌍곡선 계수 저장 및 출력
x_step = res_lsq_hyper_nonlinear.x
if print_values:
print(x_step)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_to_end_update = generate_data_hyper(x_step, tm_to_end)
# 예측 침하량 업데이트
sp_step[step_start_index[i]:final_index] = \
sp_step[step_start_index[i]:final_index] + sp_to_end_update + s0_this_step
'''
# ======================================
# Settlement Prediction (Step + Asaoka)
# ======================================
# TODO: Modify this
# 예측 침하량 초기화
sp_step_asaoka = np.zeros(time.size)
# 각 단계별로 진행
for i in range(0, num_steps):
# 각 단계별 계측 시점과 계측 침하량 배열 생성
tm_this_step = time[step_start_index[i]:step_end_index[i]]
sm_this_step = settle[step_start_index[i]:step_end_index[i]]
# 이전 단계 까지 예측 침하량 중 현재 단계에 해당 하는 부분 추출
sp_this_step = sp_step[step_start_index[i]:step_end_index[i]]
# 현재 단계 시작 부터 끝까지 시간 데이터 추출
tm_to_end = time[step_start_index[i]:final_index]
# 기존 예측 침하량에 대한 보정
sm_this_step = sm_this_step - sp_this_step
# 초기 시점 및 침하량 산정
t0_this_step = tm_this_step[0]
s0_this_step = sm_this_step[0]
# 초기 시점에 대한 시간 조정
tm_this_step = tm_this_step - t0_this_step
tm_to_end = tm_to_end - t0_this_step
# 초기 침하량에 대한 침하량 조정
sm_this_step = sm_this_step - s0_this_step
# 등간격 데이터 생성을 위한 Interpolation 함수 설정
inter_fn = interp1d(tm_this_step, sm_this_step, kind='cubic')
# 데이터 구축 간격 및 그에 해당하는 데이터 포인트 개수 설정
num_data = int(tm_this_step[-1] / asaoka_interval)
# 등간격 시간 및 침하량 데이터 설정
tm_this_step_inter = np.linspace(0, tm_this_step[-1], num=num_data, endpoint=True)
sm_this_step_inter = inter_fn(tm_this_step_inter)
# 이전 이후 등간격 침하량 배열 구축
sm_this_step_before = sm_this_step_inter[0:-2]
sm_this_step_after = sm_this_step_inter[1:-1]
# Least square 변수 초기화
x0 = np.ones(2)
# Least square 분석을 통한 침하 곡선 계수 결정
res_lsq_asaoka = least_squares(fun_asaoka, x0, args=(sm_this_step_before, sm_this_step_after))
# 기존 쌍곡선 법 계수 저장 및 출력
x_step_asaoka = res_lsq_asaoka.x
if print_values:
print(x_step_asaoka)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_to_end_update = generate_data_asaoka(x_step_asaoka, tm_to_end, asaoka_interval)
# 예측 침하량 업데이트
sp_step_asaoka[step_start_index[i]:final_index] = \
sp_step_asaoka[step_start_index[i]:final_index] + sp_to_end_update + s0_this_step
'''
# =========================================================
# Settlement prediction (nonliner, weighted nonlinear and original hyperbolic)
# =========================================================
# 성토 마지막 데이터 추출
tm_hyper = time[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
sm_hyper = settle[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
# 현재 단계 시작 부터 끝까지 시간 데이터 추출
time_hyper = time[step_start_index[num_steps - 1]:final_index]
# 초기 시점 및 침하량 산정
t0_hyper = tm_hyper[0]
s0_hyper = sm_hyper[0]
# 초기 시점에 대한 시간 조정
tm_hyper = tm_hyper - t0_hyper
time_hyper = time_hyper - t0_hyper
# 초기 침하량에 대한 침하량 조정
sm_hyper = sm_hyper - s0_hyper
# 회귀분석 시행 (비선형 쌍곡선)
x0 = np.ones(2)
res_lsq_hyper_nonlinear = least_squares(fun_hyper_nonlinear, x0,
args=(tm_hyper, sm_hyper))
# 비선형 쌍곡선 법 계수 저장 및 출력
x_hyper_nonlinear = res_lsq_hyper_nonlinear.x
if print_values:
print(x_hyper_nonlinear)
# 가중 비선형 쌍곡선 가중치 산정
weight = tm_hyper / np.sum(tm_hyper)
# 회귀분석 시행 (가중 비선형 쌍곡선)
x0 = np.ones(2)
res_lsq_hyper_weight_nonlinear = least_squares(fun_hyper_weight_nonlinear, x0,
args=(tm_hyper, sm_hyper, weight))
# 비선형 쌍곡선 법 계수 저장 및 출력
x_hyper_weight_nonlinear = res_lsq_hyper_weight_nonlinear.x
if print_values:
print(x_hyper_weight_nonlinear)
# 회귀분석 시행 (기존 쌍곡선법) - (0, 0)에 해당하는 초기 데이터를 제외하고 회귀분석 실시
x0 = np.ones(2)
res_lsq_hyper_original = least_squares(fun_hyper_original, x0,
args=(tm_hyper[1:], sm_hyper[1:]))
# 기존 쌍곡선 법 계수 저장 및 출력
x_hyper_original = res_lsq_hyper_original.x
if print_values:
print(x_hyper_original)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_hyper_nonlinear = generate_data_hyper(x_hyper_nonlinear, time_hyper)
sp_hyper_weight_nonlinear = generate_data_hyper(x_hyper_weight_nonlinear, time_hyper)
sp_hyper_original = generate_data_hyper(x_hyper_original, time_hyper)
# 예측 침하량 산정
sp_hyper_nonlinear = sp_hyper_nonlinear + s0_hyper
sp_hyper_weight_nonlinear = sp_hyper_weight_nonlinear + s0_hyper
sp_hyper_original = sp_hyper_original + s0_hyper
time_hyper = time_hyper + t0_hyper
# ===============================
# Settlement prediction (Asaoka)
# ===============================
# 성토 마지막 데이터 추출
tm_asaoka = time[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
sm_asaoka = settle[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
# 현재 단계 시작 부터 끝까지 시간 데이터 추출
time_asaoka = time[step_start_index[num_steps - 1]:final_index]
# 초기 시점 및 침하량 산정
t0_asaoka = tm_asaoka[0]
s0_asaoka = sm_asaoka[0]
# 초기 시점에 대한 시간 조정
tm_asaoka = tm_asaoka - t0_asaoka
time_asaoka = time_asaoka - t0_asaoka
# 초기 침하량에 대한 침하량 조정
sm_asaoka = sm_asaoka - s0_asaoka
# 등간격 데이터 생성을 위한 Interpolation 함수 설정
inter_fn = interp1d(tm_asaoka, sm_asaoka, kind='cubic')
# 데이터 구축 간격 및 그에 해당하는 데이터 포인트 개수 설정
num_data = int(tm_asaoka[-1] / asaoka_interval)
# 등간격 시간 및 침하량 데이터 설정
tm_asaoka_inter = np.linspace(0, tm_asaoka[-1], num=num_data, endpoint=True)
sm_asaoka_inter = inter_fn(tm_asaoka_inter)
# 이전 이후 등간격 침하량 배열 구축
sm_asaoka_before = sm_asaoka_inter[0:-2]
sm_asaoka_after = sm_asaoka_inter[1:-1]
# Least square 변수 초기화
x0 = np.ones(2)
# Least square 분석을 통한 침하 곡선 계수 결정
res_lsq_asaoka = least_squares(fun_asaoka, x0, args=(sm_asaoka_before, sm_asaoka_after))
# 기존 쌍곡선 법 계수 저장 및 출력
x_asaoka = res_lsq_asaoka.x
if print_values:
print(x_asaoka)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_asaoka = generate_data_asaoka(x_asaoka, time_asaoka, asaoka_interval)
# 예측 침하량 산정
sp_asaoka = sp_asaoka + s0_asaoka
time_asaoka = time_asaoka + t0_asaoka
# ==============================
# Post-Processing #1 : 에러 산정
# ==============================
# RMSE 계산 데이터 구간 설정 (계측)
sm_rmse = settle[final_step_predict_end_index:final_step_monitor_end_index]
# RMSE 계산 데이터 구간 설정 (단계)
sp_step_rmse = sp_step[final_step_predict_end_index:final_step_monitor_end_index]
# RMSE 계산 데이터 구간 설정 (쌍곡선)
sp_hyper_nonlinear_rmse = sp_hyper_nonlinear[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
sp_hyper_weight_nonlinear_rmse \
= sp_hyper_weight_nonlinear[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
sp_hyper_original_rmse = sp_hyper_original[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
# RMSE 계산 데이터 구간 설정 (아사오카)
sp_asaoka_rmse = sp_asaoka[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
# RMSE 산정 (단계, 비선형 쌍곡선, 기존 쌍곡선)
rmse_step = fun_rmse(sm_rmse, sp_step_rmse)
rmse_hyper_nonlinear = fun_rmse(sm_rmse, sp_hyper_nonlinear_rmse)
rmse_hyper_weight_nonlinear = fun_rmse(sm_rmse, sp_hyper_weight_nonlinear_rmse)
rmse_hyper_original = fun_rmse(sm_rmse, sp_hyper_original_rmse)
rmse_asaoka = fun_rmse(sm_rmse, sp_asaoka_rmse)
# RMSE 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선)
if print_values:
print("RMSE (Nonlinear Hyper + Step): %0.3f" % rmse_step)
print("RMSE (Nonlinear Hyperbolic): %0.3f" % rmse_hyper_nonlinear)
print("RMSE (Weighted Nonlinear Hyperbolic): %0.3f" % rmse_hyper_weight_nonlinear)
print("RMSE (Original Hyperbolic): %0.3f" % rmse_hyper_original)
print("RMSE (Asaoka): %0.3f" % rmse_asaoka)
# (최종 계측 침하량 - 예측 침하량) 계산
final_error_step = np.abs(settle[-1] - sp_step_rmse[-1])
final_error_hyper_nonlinear = np.abs(settle[-1] - sp_hyper_nonlinear_rmse[-1])
final_error_hyper_weight_nonlinear = np.abs(settle[-1] - sp_hyper_weight_nonlinear_rmse[-1])
final_error_hyper_original = np.abs(settle[-1] - sp_hyper_original_rmse[-1])
final_error_asaoka = np.abs(settle[-1] - sp_asaoka_rmse[-1])
# (최종 계측 침하량 - 예측 침하량) 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선)
if print_values:
print("Error in Final Settlement (Nonlinear Hyper + Step): %0.3f" % final_error_step)
print("Error in Final Settlement (Nonlinear Hyperbolic): %0.3f" % final_error_hyper_nonlinear)
print("Error in Final Settlement (Weighted Nonlinear Hyperbolic): %0.3f" % final_error_hyper_weight_nonlinear)
print("Error in Final Settlement (Original Hyperbolic): %0.3f" % final_error_hyper_original)
print("Error in Final Settlement (Asaoka): %0.3f" % final_error_asaoka)
# ==========================================
# Post-Processing #2 : 그래프 작성
# ==========================================
# 만약 그래프 도시가 필요할 경우,
if plot_show:
# 그래프 크기, 서브 그래프 개수 및 비율 설정
fig, axes = plt.subplots(2, 1, figsize=(12, 9), gridspec_kw={'height_ratios': [1, 3]})
# 성토고 그래프 표시
axes[0].plot(time, surcharge, color='black', label='surcharge height')
# 성토고 그래프 설정
axes[0].set_ylabel("Surcharge height (m)", fontsize=15)
axes[0].set_xlim(left=0)
axes[0].grid(color="gray", alpha=.5, linestyle='--')
axes[0].tick_params(direction='in')
# 계측 및 예측 침하량 표시
axes[1].scatter(time[0:settle.size], -settle, s=50,
facecolors='white', edgecolors='black', label='measured data')
axes[1].plot(time_hyper, -sp_hyper_original,
linestyle='--', color='red', label='Original Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_nonlinear,
linestyle='--', color='green', label='Nonlinear Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_weight_nonlinear,
linestyle='--', color='blue', label='Nonlinear Hyperbolic (Weighted)')
axes[1].plot(time_asaoka, -sp_asaoka,
linestyle='--', color='orange', label='Asaoka')
axes[1].plot(time[step_start_index[0]:], -sp_step[step_start_index[0]:],
linestyle='--', color='navy', label='Nonlinear + Step Loading')
# 침하량 그래프 설정
axes[1].set_xlabel("Time (day)", fontsize=15)
axes[1].set_ylabel("Settlement (cm)", fontsize=15)
axes[1].set_ylim(top=0)
axes[1].set_ylim(bottom=-1.5 * settle.max())
axes[1].set_xlim(left=0)
axes[1].grid(color="gray", alpha=.5, linestyle='--')
axes[1].tick_params(direction='in')
# 범례 표시
axes[1].legend(loc=1, ncol=3, frameon=True, fontsize=10)
# 예측 데이터 사용 범위 음영 처리 - 단계성토
plt.axvspan(time[step_start_index[0]], final_step_predict_end_date,
alpha=0.1, color='grey', hatch='//')
# 예측 데이터 사용 범위 음영 처리 - 기존 및 비선형 쌍곡선
plt.axvspan(final_step_start_date, final_step_predict_end_date,
alpha=0.1, color='grey', hatch='\\')
# 예측 데이터 사용 범위 표시 화살표 세로 위치 설정
arrow1_y_loc = 1.3 * min(-settle)
arrow2_y_loc = 1.4 * min(-settle)
# 화살표 크기 설정
arrow_head_width = 0.03 * max(settle)
arrow_head_length = 0.01 * max(time)
# 예측 데이터 사용 범위 화살표 처리 - 단계성토
axes[1].arrow(time[step_start_index[0]], arrow1_y_loc,
final_step_predict_end_date - time[step_start_index[0]], 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_predict_end_date, arrow1_y_loc,
time[step_start_index[0]] - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# 예측 데이터 사용 범위 화살표 처리 - 기존 및 비선형 쌍곡선
axes[1].arrow(final_step_start_date, arrow2_y_loc,
final_step_predict_end_date - final_step_start_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_predict_end_date, arrow2_y_loc,
final_step_start_date - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# Annotation 표시용 공간 설정
space = max(time) * 0.01
# 예측 데이터 사용 범위 범례 표시 - 단계성토
plt.annotate('Data Range Used (Nonlinear + Step Loading)', xy=(final_step_predict_end_date, arrow1_y_loc),
xytext=(final_step_predict_end_date + space, arrow1_y_loc),
horizontalalignment='left', verticalalignment='center')
# 예측 데이터 사용 범위 범례 표시 - 기존 및 비선형 쌍곡선
plt.annotate('Data Range Used (Hyperbolic and Asaoka)', xy=(final_step_predict_end_date, arrow1_y_loc),
xytext=(final_step_predict_end_date + space, arrow2_y_loc),
horizontalalignment='left', verticalalignment='center')
# RMSE 산정 범위 표시 화살표 세로 위치 설정
arrow3_y_loc = 0.55 * min(-settle)
# RMSE 산정 범위 화살표 표시
axes[1].arrow(final_step_predict_end_date, arrow3_y_loc,
final_step_end_date - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_end_date, arrow3_y_loc,
final_step_predict_end_date - final_step_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# RMSE 산정 범위 세로선 설정
axes[1].axvline(x=final_step_end_date, color='silver', linestyle=':')
# RMSE 산정 범위 범례 표시
plt.annotate('RMSE Estimation Section', xy=(final_step_end_date, arrow3_y_loc),
xytext=(final_step_end_date + space, arrow3_y_loc),
horizontalalignment='left', verticalalignment='center')
# RMSE 출력
mybox = {'facecolor': 'white', 'edgecolor': 'black', 'boxstyle': 'round', 'alpha': 0.2}
plt.text(max(time) * 1.04, 0.20 * min(-settle),
r"$\bf{Root\ Mean\ Squared\ Error}$"
+ "\n" + "Original Hyperbolic: %0.3f" % rmse_hyper_original
+ "\n" + "Nonlinear Hyperbolic: %0.3f" % rmse_hyper_nonlinear
+ "\n" + "Nonlinear Hyperbolic (Weighted): %0.3f" % rmse_hyper_weight_nonlinear
+ "\n" + "Asaoka: %0.3f" % rmse_asaoka
+ "\n" + "Nonlinear + Step Loading: %0.3f" % rmse_step,
color='r', horizontalalignment='right',
verticalalignment='top', fontsize='10', bbox=mybox)
# (최종 계측 침하량 - 예측값) 출력
plt.text(max(time) * 1.04, 0.55 * min(-settle),
r"$\bf{Error\ in\ Final\ Settlement}$"
+ "\n" + "Original Hyperbolic: %0.3f" % final_error_hyper_original
+ "\n" + "Nonlinear Hyperbolic: %0.3f" % final_error_hyper_nonlinear
+ "\n" + "Nonlinear Hyperbolic (Weighted): %0.3f" % final_error_hyper_weight_nonlinear
+ "\n" + "Asaoka: %0.3f" % final_error_asaoka
+ "\n" + "Nonlinear + Step Loading: %0.3f" % final_error_step,
color='r', horizontalalignment='right',
verticalalignment='top', fontsize='10', bbox=mybox)
# 파일 이름만 추출
filename = os.path.basename(point_name)
# 그래프 제목 표시
plt.title(filename + ": up to %i%% data used in the final step" % final_step_predict_percent)
# 그래프 저장 (SVG 및 PNG)
# plt.savefig(output_dir + '/' + filename +' %i percent (SVG).svg' %final_step_predict_percent, bbox_inches='tight')
#plt.savefig(output_dir + '/' + filename + ' %i percent (PNG).png' % final_step_predict_percent, bbox_inches='tight')
# 그래프 출력
if plot_show:
plt.show()
# 그래프 닫기 (메모리 소모 방지)
plt.close()
# 예측 완료 표시
print("Settlement prediction is done for " + filename +
" with " + str(final_step_predict_percent) + "% data usage")
# 단계 성토 고려 여부 표시
is_multi_step = True
if len(step_start_index) == 1:
is_multi_step = False
# 반환
axes[1].plot(time_hyper, -sp_hyper_original,
linestyle='--', color='red', label='Original Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_nonlinear,
linestyle='--', color='green', label='Nonlinear Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_weight_nonlinear,
linestyle='--', color='blue', label='Nonlinear Hyperbolic (Weighted)')
axes[1].plot(time_asaoka, -sp_asaoka,
linestyle='--', color='orange', label='Asaoka')
axes[1].plot(time[step_start_index[0]:], -sp_step[step_start_index[0]:],
linestyle='--', color='navy', label='Nonlinear + Step Loading')
return [time_hyper, sp_hyper_original,
time_hyper, sp_hyper_nonlinear,
time_hyper, sp_hyper_weight_nonlinear,
time_asaoka, sp_asaoka,
time[step_start_index[0]:], sp_step[step_start_index[0]:],
rmse_hyper_original,
rmse_hyper_nonlinear,
rmse_hyper_weight_nonlinear,
rmse_asaoka,
rmse_step,
final_error_hyper_original,
final_error_hyper_nonlinear,
final_error_hyper_weight_nonlinear,
final_error_asaoka,
final_error_step]
'''
run_settle_prediction(input_file='data/2-5_No.39.csv',
output_dir='output',
final_step_predict_percent=50,
additional_predict_percent=100,
plot_show=True,
print_values=True,
run_original_hyperbolic=True,
run_nonlinear_hyperbolic=True,
run_weighted_nonlinear_hyperbolic=True,
run_asaoka=True,
run_step_prediction=True,
asaoka_interval=3,
settle_unit='cm')
'''

198
Asaoka.py
View File

@ -1,198 +0,0 @@
# =================
# Import 섹션
# =================
import os.path
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import least_squares
from scipy.interpolate import interp1d
# =================
# Function 섹션
# =================
# 주어진 계수를 이용하여 아사오카법 기반 시간-침하 곡선 반환
def generate_data_asaoka(px, pt, dt):
return (px[1] / (1 - px[0])) * (1 - (px[0] ** (pt / dt)))
# 아사오카법 목표 함수
def fun_asaoka(px, ps_b, ps_a):
return px[0] * ps_b + px[1] - ps_a
# ====================
# 파일 읽기, 데이터 설정
# ====================
# CSV 파일 읽기
data = pd.read_csv("data/2-6_J-01.csv")
# 시간, 침하량, 성토고 배열 생성
time = data['Time'].to_numpy()
settle = data['Settlement'].to_numpy()
surcharge = data['Surcharge'].to_numpy()
# 만일 침하량의 단위가 m일 경우, 조정
settle = settle * 100
# 데이터 닫기
# 마지막 계측 데이터 index + 1 파악
final_index = time.size
# =================
# 성토 단계 구분
# =================
# 성토 단계 시작 index 리스트 초기화
step_start_index = [0]
# 성토 단계 끝 index 리스트 초기화
step_end_index = []
# 현재 성토고 설정
current_surcharge = surcharge[0]
# 단계 시작 시점 초기화
step_start_date = 0
# 모든 시간-성토고 데이터에서 순차적으로 확인
for index in range(len(surcharge)):
# 만일 성토고의 변화가 있을 경우,
if surcharge[index] != current_surcharge:
step_end_index.append(index)
step_start_index.append(index)
current_surcharge = surcharge[index]
# 마지막 성토 단계 끝 index 추가
step_end_index.append(len(surcharge) - 1)
# =================
# 성토 단계 조정
# =================
# 성토고 유지 기간이 매우 짧을 경우, 해석 단계에서 제외
# 조정 성토 시작 및 끝 인덱스 리스트 초기화
step_start_index_adjust = []
step_end_index_adjust = []
# 각 성토 단계 별로 분석
for i in range(0, len(step_start_index)):
# 현 단계 성토 시작일 / 끝일 파악
step_start_date = time[step_start_index[i]]
step_end_date = time[step_end_index[i]]
# 현 성토고 유지 일수 및 데이터 개수 파악
step_span = step_end_date - step_start_date
step_data_num = step_end_index[i] - step_start_index[i] + 1
# 성토고 유지일 및 데이터 개수 기준 적용
if step_span > 30 and step_data_num > 5:
step_start_index_adjust.append((step_start_index[i]))
step_end_index_adjust.append((step_end_index[i]))
# 성토 시작 및 끝 인덱스 리스트 업데이트
step_start_index = step_start_index_adjust
step_end_index = step_end_index_adjust
# 침하 예측을 수행할 단계 설정 (현재 끝에서 2단계 이용)
step_start_index = step_start_index[-2:]
step_end_index = step_end_index[-2:]
# 성토 단계 횟수 파악 및 저장
num_steps = len(step_start_index)
# ===========================
# 최종 단계 데이터 사용 범위 조정
# ===========================
# 데이터 사용 퍼센트에 해당하는 기간 계산
final_step_end_date = time[-1]
final_step_start_date = time[step_start_index[num_steps - 1]]
final_step_period = final_step_end_date - final_step_start_date
final_step_predict_end_date = final_step_start_date + final_step_period * 50 / 100
# 데이터 사용 끝 시점 인덱스 초기화
final_step_predict_end_index = -1
# 데이터 사용 끝 시점 인덱스 검색
count = 0
for day in time:
count = count + 1
if day > final_step_predict_end_date:
final_step_predict_end_index = count - 1
break
# 마지막 성토 단계, 마지막 계측 시점 인덱스 업데이트
final_step_monitor_end_index = step_end_index[num_steps - 1]
step_end_index[num_steps - 1] = final_step_predict_end_index
# =================
# 추가 예측 구간 반영
# =================
# 추가 예측 일 입력 (현재 전체 계측일 * 계수)
add_days = time[-1]
# 마지막 성토고 및 마지막 계측일 저장
final_surcharge = surcharge[final_index - 1]
final_time = time[final_index - 1]
# 추가 시간 및 성토고 배열 설정 (100개의 시점 설정)
time_add = np.linspace(final_time + 1, final_time + add_days, 100)
surcharge_add = np.ones(100) * final_surcharge
# 기존 시간 및 성토고 배열에 붙이기
time = np.append(time, time_add)
surcharge = np.append(surcharge, surcharge_add)
# 마지막 인덱스값 재조정
final_index = time.size
# ===============================
# Settlement prediction (Asaoka)
# ===============================
# 성토 마지막 데이터 추출
tm_asaoka = time[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
sm_asaoka = settle[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
# 초기 시점 및 침하량 산정
t0_asaoka = tm_asaoka[0]
s0_asaoka = sm_asaoka[0]
# 초기 시점에 대한 시간 조정
tm_asaoka = tm_asaoka - t0_asaoka
# 초기 침하량에 대한 침하량 조정
sm_asaoka = sm_asaoka - s0_asaoka
# Interpolation 함수 설정
inter_fn = interp1d(tm_asaoka, sm_asaoka, kind='cubic')
# 데이터 구축 간격 설정
interval = 10
num_data = int(tm_asaoka[-1]/3)
tm_asaoka_new = np.linspace(0, tm_asaoka[-1], num=num_data, endpoint=True)
sm_asaoka_new = inter_fn(tm_asaoka_new)
sm_asaoka_new1 = sm_asaoka_new[0:-2]
sm_asaoka_new2 = sm_asaoka_new[1:-1]
x0 = np.ones(2)
res_lsq_asaoka = least_squares(fun_asaoka, x0,
args=(sm_asaoka_new1, sm_asaoka_new2))
# 계측 및 예측 침하량 표시
plt.scatter(sm_asaoka_new1, sm_asaoka_new2, s=50,
facecolors='white', edgecolors='black', label='measured data')
plt.show()

View File

@ -38,16 +38,7 @@ for input_file in input_files:
for i in range(20, 100, 10): for i in range(20, 100, 10):
# 침하 예측을 수행하고 반환값 저장 # 침하 예측을 수행하고 반환값 저장
return_values = settle_prediction_steps_main.\ return_values = settle_prediction_steps_main.run_settle_prediction_from_file(input_file=input_file)
run_settle_prediction(input_file=input_file, output_dir=output_dir,
final_step_predict_percent=i,
additional_predict_percent=100,
plot_show=False,
print_values=False,
run_original_hyperbolic=True,
run_nonlinear_hyperbolic=True,
run_step_prediction=True,
settle_unit=settle_unit)
# 데이터프레임에 일단 및 다단 성토를 포함한 예측의 에러를 저장 # 데이터프레임에 일단 및 다단 성토를 포함한 예측의 에러를 저장
df_overall.loc[len(df_overall.index)] = [input_file, i, return_values[0], return_values[1], df_overall.loc[len(df_overall.index)] = [input_file, i, return_values[0], return_values[1],
@ -61,4 +52,4 @@ for input_file in input_files:
# 에러 파일을 출력 # 에러 파일을 출력
df_overall.to_csv('error_overall.csv') df_overall.to_csv('error_overall.csv')
df_multi_step.to_csv('error_multi_step.csv') df_multi_step.to_csv('error_multi_step.csv')

270
controller.py Normal file
View File

@ -0,0 +1,270 @@
"""
Title: Controller
Developer:
Sang Inn Woo, Ph.D. @ Incheon National University
Starting Date: 2022-11-10
"""
import psycopg2 as pg2
import numpy as np
import settle_prediction_steps_main
import matplotlib.pyplot as plt
import sys
import pdb
'''
apptb_surset01
cons_code: names of monitoring points
apptb_surset02
cons_code: names of monitoring points
amount_cum_sub: accumulated settlement
fill_height: height of surcharge fill
nod: number of date
'''
def settlement_prediction(business_code, cons_code):
# connect the database
#connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432") # SW local
#connection = pg2.connect("host=localhost dbname=sgis user=postgres password=postgres port=5434") # ICTWay local
# connect the database
try:
# 디비엔텍 DB서버
connection = pg2.connect("host=10.dbnt.co.kr dbname=sgis_new user=smartgeoinfo password=Smartgeoinfo1! port=55432")
print(f"[OK] DB 접속 성공: {connection.get_dsn_parameters()['host']}")
except pg2.OperationalError as e:
print(f"[Error] DB 접속 실패: {e}")
sys.exit(1)
# set cursor
cursor = connection.cursor()
# select monitoring data for the monitoring point
postgres_select_query = """SELECT amount_cum_sub, fill_height, nod FROM apptb_surset02 WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code + """' ORDER BY nod ASC"""
'''
변경사항
(amount_cum_sub * -1) --> amount_cum_sub
침하예측은 부호의 영향을 크게 받습니다.
현재 개발이 침하량 양수를 기준으로 되어 있어, 양수를 넘겨 줘야 합니다.
여기서는 일단 데이터 그대로 받습니다.
'''
cursor.execute(postgres_select_query)
monitoring_record = cursor.fetchall()
# initialize time, surcharge, and settlement lists
time = []
surcharge = []
settlement = []
# fill lists
for row in monitoring_record:
settlement.append(float(row[0]))
surcharge.append(float(row[1]))
time.append(float(row[2]))
# convert lists to np arrays
settlement = np.array(settlement)
surcharge = np.array(surcharge)
time = np.array(time)
# adjust the sign
sgn = 1
if np.average(settlement) < 0:
sgn = -1
settlement = sgn * settlement
'''
변경사항
침하 예측은 부호의 영향을 크게 받습니다.
만일 평균 침하량의 부호가 음수라면,
침하량이 음수로 기입되어있다고 보고,
양수로 변환시킵니다.
'''
# run the settlement prediction and get results
results = (settle_prediction_steps_main.
run_settle_prediction(point_name=cons_code, np_time=time,
np_surcharge=surcharge, np_settlement=settlement,
final_step_predict_percent=90,
additional_predict_percent=300,
asaoka_interval=3))
# prediction method code
# 1: original hyperbolic method (쌍곡선법)
# 2: nonlinear hyperbolic method (비선형 쌍곡선법)
# 3: weighted nonlinear hyperbolic method (가중 비선형 쌍곡선법)
# 4: Asaoka method (아사오카법)
# 5: Step loading (단계성토 고려법)
'''
time_hyper, sp_hyper_original,
time_hyper, sp_hyper_nonlinear,
time_hyper, sp_hyper_weight_nonlinear,
time_asaoka, sp_asaoka,
time[step_start_index[0]:], -sp_step[step_start_index[0]:],
'''
for i in range(5):
# if there are prediction data for the given data point, delete it first
postgres_delete_query = """DELETE FROM apptb_pred02_no""" + str(i + 1) \
+ """ WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code + """'"""
cursor.execute(postgres_delete_query)
connection.commit()
# get time and settlement arrays
time = results[2 * i]
predicted_settlement = results[2 * i + 1]
# for each prediction time
for j in range(len(time)):
# construct insert query
postgres_insert_query \
= """INSERT INTO apptb_pred02_no""" + str(i + 1) + """ """ \
+ """(business_code, cons_code, prediction_progress_days, predicted_settlement, prediction_method) """ \
+ """VALUES (%s, %s, %s, %s, %s)"""
# set data to insert
#record_to_insert = (business_code, cons_code, time[j], -predicted_settlement[j], i + 1)
record_to_insert = (business_code, cons_code, float(time[j]), float(-predicted_settlement[j]), i + 1)
'''
변경사항
predicted_settlement[j] --> -predicted_settlement[j]
여기서 침하예측값의 부호를 음수로 설정해서 DB에 저장합니다.
'''
# execute the insert query
cursor.execute(postgres_insert_query, record_to_insert)
# commit changes
connection.commit()
def read_database_and_plot(business_code, cons_code):
# connect the database
connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432") #SW local
#connection = pg2.connect("host=192.168.0.72 dbname=sgis user=sgis password=sgis port=5432") # ICTWay internal
# set cursor
cursor = connection.cursor()
# select monitoring data for the monitoring point
postgres_select_query = ("""SELECT amount_cum_sub, fill_height, nod FROM apptb_surset02 WHERE business_code='"""
+ business_code + """' and cons_code='""" + cons_code + """' ORDER BY nod ASC""")
cursor.execute(postgres_select_query)
monitoring_record = cursor.fetchall()
# initialize time, surcharge, and settlement lists
time_monitored = []
surcharge_monitored = []
settlement_monitored = []
# fill lists
for row in monitoring_record:
settlement_monitored.append(float(row[0]))
surcharge_monitored.append(float(row[1]))
time_monitored.append(float(row[2]))
# convert lists to np arrays
settlement_monitored = np.array(settlement_monitored)
surcharge_monitored = np.array(surcharge_monitored)
time_monitored = np.array(time_monitored)
# prediction method code
# 1: original hyperbolic method
# 2: nonlinear hyperbolic method
# 3: weighted nonlinear hyperbolic method
# 4: Asaoka method
# 5: Step loading
time_predicted_series = []
settlement_predicted_series = []
for i in range(5):
# temporarily set the prediction method as 0
postgres_select_query = """SELECT prediction_progress_days, predicted_settlement """ \
+ """FROM apptb_pred02_no""" + str(i + 1) \
+ """ WHERE business_code='""" + business_code \
+ """' and cons_code='""" + cons_code \
+ """' ORDER BY prediction_progress_days ASC"""
# select predicted data for the monitoring point
cursor.execute(postgres_select_query)
prediction_record = cursor.fetchall()
# initialize time, surcharge, and settlement lists
time_predicted = []
settlement_predicted = []
# fill lists
for row in prediction_record:
time_predicted.append(float(row[0]))
settlement_predicted.append(float(row[1]))
# add lists to series
time_predicted_series.append(np.array(time_predicted))
settlement_predicted_series.append(np.array(settlement_predicted))
# 그래프 크기, 서브 그래프 개수 및 비율 설정
fig, axes = plt.subplots(2, 1, figsize=(8, 6), gridspec_kw={'height_ratios': [1, 3]})
# 성토고 그래프 표시
axes[0].plot(time_monitored, surcharge_monitored, color='black', label='surcharge height')
# 성토고 그래프 설정
axes[0].set_ylabel("Surcharge height (m)", fontsize=10)
axes[0].set_xlim(left=0)
axes[0].set_xlim(right=np.max(time_predicted))
axes[0].grid(color="gray", alpha=.5, linestyle='--')
axes[0].tick_params(direction='in')
# 계측 및 예측 침하량 표시
axes[1].scatter(time_monitored, -settlement_monitored, s=30,
facecolors='white', edgecolors='grey', label='measured data')
axes[1].plot(time_predicted_series[0], settlement_predicted_series[0],
linestyle='--', color='red', label='Original Hyperbolic')
axes[1].plot(time_predicted_series[1], settlement_predicted_series[1],
linestyle='--', color='blue', label='Nonlinear Hyperbolic')
axes[1].plot(time_predicted_series[2], settlement_predicted_series[2],
linestyle='--', color='black', label='Weighted Nonlinear Hyperbolic')
axes[1].plot(time_predicted_series[3], settlement_predicted_series[3],
linestyle='--', color='olive', label='Asaoka')
axes[1].plot(time_predicted_series[4], settlement_predicted_series[4],
linestyle='--', color='navy', label='Step Loading Hyperbolic')
axes[0].set_ylabel("Settlement (cm)", fontsize=10)
axes[1].legend()
axes[1].set_ylim(top=0)
axes[1].set_xlim(left=0)
axes[1].set_xlim(right=np.max(time_predicted))
plt.show()
# script to call: python3 controller.py [business_code] [cons_code]
# for example: python3 controller.py 221222SA0003 CONS001
if __name__ == '__main__':
# Example site 1: 231229SA0001, CONS017
# Example site 2: 231229SA0006, CONS061
args = sys.argv[1:]
business_code = args[0]
cons_code = args[1]
settlement_prediction(business_code = business_code, cons_code = cons_code)
print("The settlement prediction is over.")
#read_database_and_plot(business_code=business_code, cons_code=cons_code)
#print("Visualization is over.")

View File

@ -1,3 +1,10 @@
"""
Title: Error analysis of the settlement prediction curves
Developer:
Sang Inn Woo, Ph.D. @ Incheon National University
Starting Date: 2022-11-10
"""
import pandas as pd import pandas as pd
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt

BIN
error_analysis.zip Normal file

Binary file not shown.

273
error_multi_step.csv Normal file
View File

@ -0,0 +1,273 @@
,File,Data_usage,RMSE_hyper_original,RMSE_hyper_nonlinear,RMSE_step,Final_error_hyper_original,Final_error_hyper_nonlinear,Final_error_step
0,data\1_S-1.csv,20,23.478646116979654,16.776209296837532,11.120719833394293,31.147089838760067,16.776209296837532,34.39703383058222
1,data\1_S-1.csv,30,12.402243644854485,5.208861608476322,2.150195941283636,13.42602435195194,5.208861608476322,17.88176228477299
2,data\1_S-1.csv,40,5.5477225601078475,2.4340047901478026,6.124088322692104,3.137413028656972,2.4340047901478026,6.698331612401873
3,data\1_S-1.csv,50,1.4243573608600337,5.339485942822988,7.291387329162888,1.5491904788507092,5.339485942822988,0.18927190226409607
4,data\1_S-1.csv,60,1.2405425139403812,5.484226338578135,5.7050750283865845,2.4292610036214497,5.484226338578135,1.4831090032904086
5,data\1_S-1.csv,70,1.597066962397822,4.027720666840552,2.7608737957120946,1.0042867085237617,4.027720666840552,1.540451618948424
6,data\1_S-1.csv,80,1.5539368201809547,3.3570950843708673,1.8277216110401846,0.3671659497912856,3.3570950843708673,1.1246294275445763
7,data\1_S-1.csv,90,1.1605550014743073,2.5042477994964543,0.8365472478337495,0.3815598208090165,2.5042477994964543,0.5605550014742988
8,data\1_S-10.csv,20,2.250454268092718,11.945795822232032,14.022426652187274,5.458857525298658,12.78210944667846,4.480921480938093
9,data\1_S-10.csv,30,1.4798556806649208,4.5201471879813395,1.2820054079359062,5.56697174346722,6.187128156863005,2.9409475590047975
10,data\1_S-10.csv,40,2.5831593209425114,1.5068804246967553,3.9556125069100414,7.327682225114709,1.2159945876728537,4.603069473692216
11,data\1_S-10.csv,50,3.0493487660606946,2.5290835903126405,3.781342127791944,6.543763194275195,0.7580449556824689,4.96050056705603
12,data\1_S-10.csv,60,2.753018935138921,2.4773563031889623,2.4829685067950007,5.197657553387721,1.1114680943428539,4.144430467497713
13,data\1_S-10.csv,70,2.057161629717554,1.852262568800247,1.125746596630284,3.5981758084098927,0.7917721159345887,2.9539000368872053
14,data\1_S-10.csv,80,1.385275833572099,1.222635822549523,0.21141515162913316,3.0372816823669457,0.28624544571854166,2.055521208384789
15,data\1_S-10.csv,90,1.2289805279797732,1.1001404713990144,0.17079561302316265,2.659062579968389,0.22576196364864093,1.687906445950702
16,data\1_S-11.csv,20,12.780165484446645,3.543442987743452,3.826654330541223,14.142903035702759,2.8057093191787796,18.591421005556583
17,data\1_S-11.csv,30,8.950467372059691,1.8083726479927158,0.600058015048404,10.92937956217384,1.2372043888069384,13.038668567087655
18,data\1_S-11.csv,40,6.0781469397310275,2.0814044264045988,1.9762362900266666,8.545036423072245,1.6105013874823666,8.905430697186034
19,data\1_S-11.csv,50,4.354144249638527,1.830001873935883,1.5994546831172567,6.658170772673151,1.4688426083053616,6.377174516981569
20,data\1_S-11.csv,60,3.0600926275659055,1.5911267267597402,1.253477114943287,5.316149584849218,1.336850488399163,4.339127785422562
21,data\1_S-11.csv,70,2.0782232665915683,1.023377922742072,0.4250838856090123,3.7693273765738313,0.8323985798147107,2.8678089286949273
22,data\1_S-11.csv,80,1.3106083121407994,0.46948359525194167,0.24458020822699267,3.2221638079518704,0.29468631398794154,1.9290492102943517
23,data\1_S-11.csv,90,1.1328843800677029,0.4200675824984277,0.12988845884140596,2.8519660229689157,0.2547636891884459,1.574556969531173
24,data\1_S-12.csv,20,2.7120407627429746,7.298582927104371,8.599569444991946,13.542896407505745,2.6778432237681407,4.889581454963832
25,data\1_S-12.csv,30,5.402183151249969,7.687632014330983,7.420643449273505,12.39344963386265,3.7415741342788835,8.386482482784231
26,data\1_S-12.csv,40,4.394685384926156,4.845951876514215,2.4643841148224466,6.954026249999055,2.412851448737444,6.4929381725025905
27,data\1_S-12.csv,50,3.2605713395995304,3.1319161474217667,0.8446842192946161,4.935018097624205,1.4510820822297386,4.728667992653101
28,data\1_S-12.csv,60,1.9783184512590368,1.569473731965631,0.6435496596366582,2.850940115587415,0.5703161045481381,2.95931761635174
29,data\1_S-12.csv,70,1.0000004382811707,0.5560357418512717,0.8212550238314622,2.1698581422986623,0.38681115435021735,1.7765112770664189
30,data\1_S-12.csv,80,0.8241746816026769,0.45382185232957534,0.3656309038475283,1.8254973815355815,0.3919724859787349,1.4696145959291016
31,data\1_S-12.csv,90,0.7085626123177089,0.417602660005857,0.07822953821441234,1.4335822794754267,0.32528847438603103,1.199407747704015
32,data\1_S-15.csv,20,0.2880082260432656,0.31324495710969785,0.3234024531936505,0.4022129400876201,0.31324495710969785,0.5801711693735285
33,data\1_S-15.csv,30,0.2612327425554409,0.1982982487483713,0.13414140830370697,0.15485897379953692,0.1982982487483713,0.45587398459380846
34,data\1_S-15.csv,40,0.1627146650925451,0.0847291405415234,0.033866481436163935,0.038989961050724664,0.0847291405415234,0.26057510197224854
35,data\1_S-15.csv,50,0.09403647123965381,0.03947355449793594,0.010432214231313604,0.016236014905314802,0.03947355449793594,0.14077931124954113
36,data\1_S-15.csv,60,0.05952893520483399,0.023106062873209498,0.005335595378394103,0.005718866196795912,0.023106062873209498,0.08386450933302625
37,data\1_S-15.csv,70,0.04473399276446019,0.016377408145597953,0.003981572071803215,0.0022423032047758674,0.016377408145597953,0.06066449965583809
38,data\1_S-15.csv,80,0.033746284419315604,0.014448091335809161,0.006681360997480904,0.007188935630891185,0.014448091335809161,0.04113326606019707
39,data\1_S-15.csv,90,0.02766081220100747,0.013596987999911315,0.007021701057583198,0.006864032090390862,0.013596987999911315,0.028039740265827118
40,data\1_S-16.csv,20,3.3040962181845503,2.5459436259747408,1.45493861867461,3.3531886022017394,2.5459436259747408,5.830754051237456
41,data\1_S-16.csv,30,3.397577659982119,2.1593623899054246,3.4385208065435036,6.806972770490538,2.1593623899054246,5.463521952189097
42,data\1_S-16.csv,40,3.5615235188381624,3.0031596961493916,3.530913385578609,6.7713581454297,3.0031596961493916,5.321234213446772
43,data\1_S-16.csv,50,2.979305758737618,2.456347223799883,2.003799792080917,4.62235381428586,2.456347223799883,4.208604160138584
44,data\1_S-16.csv,60,2.440684687417658,1.9674064134436176,1.3030765444312726,3.7587013753882332,1.9674064134436176,3.219011843360569
45,data\1_S-16.csv,70,1.9611474785668164,1.5509606603565687,0.8011290107342396,2.4317880070651103,1.5509606603565687,2.378298589011777
46,data\1_S-16.csv,80,1.147210901886969,0.7794500638783542,0.25842333575239057,1.0220331261428133,0.7794500638783542,1.4548249995786477
47,data\1_S-16.csv,90,0.6658320594808093,0.3599471149325066,0.3460836953388925,1.153154586718134,0.3599471149325066,0.9885512420661939
48,data\1_S-17.csv,20,14.817149675077845,11.00820026665355,9.160227086888597,19.49554522452195,11.00820026665355,22.114584610703353
49,data\1_S-17.csv,30,12.619854078927927,9.134481442421977,6.9071576082667425,16.03629997348982,9.134481442421977,17.657859773028946
50,data\1_S-17.csv,40,9.602067756400896,6.47474795338568,4.084271910648953,11.477366749731411,6.47474795338568,12.643407243916172
51,data\1_S-17.csv,50,6.782687807338599,3.914529880205498,1.207594132519305,6.842442053294446,3.914529880205498,8.457968207762192
52,data\1_S-17.csv,60,4.4393395624054275,2.0008384382997764,0.7688263011902206,4.276987675473648,2.0008384382997764,5.234788630782006
53,data\1_S-17.csv,70,2.931857444605733,1.0695640076905621,0.9273110304857721,3.2225789084675727,1.0695640076905621,3.2388963393675
54,data\1_S-17.csv,80,1.630643658296253,0.3125213348966345,1.1612740930672463,1.8326739324209824,0.3125213348966345,1.8464644601669704
55,data\1_S-17.csv,90,0.9032383117232653,0.24827782525448813,0.9587919569314237,1.674370356936783,0.24827782525448813,1.184956388177838
56,data\1_S-18.csv,20,4.8569683354725655,8.370185056504068,9.972599263436887,14.865095422926293,8.370185056504068,9.978111512340448
57,data\1_S-18.csv,30,7.502879610626537,9.170910252757494,9.19044618685778,13.6454883261436,9.170910252757494,13.302444006063652
58,data\1_S-18.csv,40,7.138752761075896,7.328752844478417,5.329825897187873,9.095760769015405,7.328752844478417,11.980402617417937
59,data\1_S-18.csv,50,5.233986629512829,4.185885403593828,0.783413059416807,3.6322332834046427,4.185885403593828,8.773198466234518
60,data\1_S-18.csv,60,3.67241324585774,2.169070128892058,0.7783608535039951,2.154039188017579,2.169070128892058,6.401575843298858
61,data\1_S-18.csv,70,2.5424291135664294,1.1802477097783282,0.4923296701790672,2.064256197436636,1.1802477097783282,4.5863843876741015
62,data\1_S-18.csv,80,2.316459386629839,1.1667965600421817,0.4129961986646059,1.7712363628695194,1.1667965600421817,3.931515685511968
63,data\1_S-18.csv,90,2.2309174292325835,1.2202603294310326,0.6119224915467529,1.215885316632567,1.2202603294310326,3.3551102882782544
64,data\1_S-19.csv,20,0.4813921356094701,0.38645090597916665,0.262085380838314,,0.38645090597916665,0.14662814292741366
65,data\1_S-19.csv,30,0.2542390778983757,0.4486975357849197,0.9538761866430289,1.4578288563061808,0.4486975357849197,0.44082650844485194
66,data\1_S-19.csv,40,0.31581380528892206,0.3508458151659684,0.3483818926223097,0.38722202897310515,0.3508458151659684,0.5728220719268533
67,data\1_S-19.csv,50,0.4289141972590556,0.47865360212276115,0.5717551474263084,0.17735833501852744,0.47865360212276115,0.732654069325152
68,data\1_S-19.csv,60,0.6124097428850761,0.6727217066022969,0.7994377009874323,0.5650083536577103,0.6727217066022969,0.9069841958082296
69,data\1_S-19.csv,70,0.5623432486393993,0.5988132191913642,0.5105750432737622,0.3048821664614563,0.5988132191913642,0.744300913392955
70,data\1_S-19.csv,80,0.4580512395915517,0.5006204677271572,0.32797151283517634,0.22446438982174222,0.5006204677271572,0.5387456623125226
71,data\1_S-19.csv,90,0.3623750170500113,0.42372832622671464,0.2209220631754878,0.18242844832152194,0.42372832622671464,0.3623750170500113
72,data\1_S-2.csv,20,29.13824269821142,32.97006600177633,32.21195457337266,50.98953962583674,32.97006600177633,75.5054893685952
73,data\1_S-2.csv,30,29.094378311540368,26.78893971941293,24.057354502241488,45.95952965698194,26.78893971941293,69.77267293076979
74,data\1_S-2.csv,40,25.668812328945442,19.737664954989953,16.573301668930714,24.389044284038413,19.737664954989953,52.38088891618217
75,data\1_S-2.csv,50,21.583732110692612,13.578484970142826,9.284277402492405,12.336281678713968,13.578484970142826,37.166154284409075
76,data\1_S-2.csv,60,16.62078573542056,8.641182434779754,4.371591913792901,6.562214890034458,8.641182434779754,25.272718668872173
77,data\1_S-2.csv,70,10.811437650017501,4.671426204672148,1.3020176782522703,3.462313585656565,4.671426204672148,14.045796578049647
78,data\1_S-2.csv,80,9.173065296379605,3.754546671085857,0.7442237783985166,2.5270190520652127,3.754546671085857,10.64978363276596
79,data\1_S-2.csv,90,7.478016107420814,3.0808772341682698,0.5970427746556197,2.4566348296251874,3.0808772341682698,6.8780161074208195
80,data\1_S-20.csv,20,1.5991320251442396,0.734274177067469,0.5024653897933992,,0.734274177067469,1.6181966710915923
81,data\1_S-20.csv,30,0.983467706082507,0.5566263918424004,1.1599839311022724,0.6891888364909496,0.5566263918424004,0.6205457463884416
82,data\1_S-20.csv,40,1.0445947683198489,1.8102553204615202,1.7764261241719057,3.0507083248841558,1.8102553204615202,2.0625130717155606
83,data\1_S-20.csv,50,1.0135995303584442,1.2428489549759612,0.8261289496652552,1.3546541436513129,1.2428489549759612,1.8588171166887548
84,data\1_S-20.csv,60,0.9359575571420113,0.9239063949715502,0.6167255864523585,0.9803172858616156,0.9239063949715502,1.5791947067579333
85,data\1_S-20.csv,70,1.0160045814445942,0.9713676236655032,0.8095088685500043,0.9647285147730768,0.9713676236655032,1.4728692385142317
86,data\1_S-20.csv,80,0.9330057968496768,0.8398552977157308,0.6027524648118354,0.8579451894453256,0.8398552977157308,1.147925727916272
87,data\1_S-20.csv,90,0.7810454819952506,0.6916580785283166,0.4052801175930112,0.5899582590956429,0.6916580785283166,0.7810454819952506
88,data\1_S-3.csv,20,31.079801282684922,20.79725899625463,6.818060318938833,28.308551362298864,20.79725899625463,47.238716900050875
89,data\1_S-3.csv,30,15.753554144633085,2.6352848578842987,6.859721543987546,4.702100098681567,2.6352848578842987,23.36498322819596
90,data\1_S-3.csv,40,6.0485793575074664,7.374862524981409,9.794646700171079,5.6935020904941345,7.374862524981409,6.835073565304668
91,data\1_S-3.csv,50,2.094048920603935,8.202986587700892,8.159727175403006,6.144855383897656,8.202986587700892,0.270197824992394
92,data\1_S-3.csv,60,1.4543199299679703,7.237301240068834,5.981863502688744,5.584626897838916,7.237301240068834,2.1218242419079445
93,data\1_S-3.csv,70,2.19394289660755,5.393455869919254,3.609877616358329,3.771152629539646,5.393455869919254,2.6421432980650223
94,data\1_S-3.csv,80,2.4322158153771154,4.8844137991230685,2.9524536403368833,2.6133509468069507,4.8844137991230685,2.352481088106998
95,data\1_S-3.csv,90,2.734140059942362,4.359378633827035,2.227164224763243,2.404017139031467,4.359378633827035,1.5341400599423594
96,data\1_S-4.csv,20,28.378259539192584,20.76394535575388,14.033947286055122,33.956392919022214,20.76394535575388,45.99094608090661
97,data\1_S-4.csv,30,16.61106216131759,8.942811079170239,3.4524341187436187,18.710539650936383,8.942811079170239,26.84827159237942
98,data\1_S-4.csv,40,9.797519852171225,2.5496599587282107,3.319788316482909,8.412714329822519,2.5496599587282107,14.194926674696305
99,data\1_S-4.csv,50,6.125834599642608,2.6040335337737477,5.850573674531381,1.9179721973123014,2.6040335337737477,7.993250496636364
100,data\1_S-4.csv,60,2.8788592236974906,4.206983125971776,5.795766591760959,1.7072180407065176,4.206983125971776,3.461211024688268
101,data\1_S-4.csv,70,0.4085160425472198,4.062087348253181,3.7531585944730246,1.6008828051224104,4.062087348253181,0.6633379205306653
102,data\1_S-4.csv,80,0.47595142031207355,3.724576037953115,2.999485225439125,0.5935342876852995,3.724576037953115,0.5578013561442674
103,data\1_S-4.csv,90,0.4702196369976548,2.770238687192787,1.4789221203064358,0.09388708245413113,2.770238687192787,0.729780363002348
104,data\1_S-5.csv,20,1.967727423890477,1.3254354393668206,1.945810601215972,1.9607824925465678,1.3254354393668206,0.1874346159763789
105,data\1_S-5.csv,30,1.4382082353192773,1.919434236053275,2.533465805806511,2.023289939059952,1.919434236053275,2.9894571542230324
106,data\1_S-5.csv,40,2.7465167206481573,4.409602595386762,5.291501886071811,5.725165924900896,4.409602595386762,6.266108561419188
107,data\1_S-5.csv,50,3.461920761656759,4.381575529957983,4.275659286339894,5.075875198611303,4.381575529957983,6.925871218956949
108,data\1_S-5.csv,60,4.361846022920693,4.604849959229172,4.196889816830964,4.208858373774062,4.604849959229172,6.861029398211379
109,data\1_S-5.csv,70,4.3969327856562845,4.205632373475578,3.4012384137145903,3.2719092143242556,4.205632373475578,6.121369526288497
110,data\1_S-5.csv,80,4.096266723294103,3.499985586090912,2.3855823394470796,2.1966796537602513,3.499985586090912,4.9464799766905685
111,data\1_S-5.csv,90,3.4604082851893114,2.689997383766356,1.47402197284386,1.2253835699076183,2.689997383766356,3.58886013074747
112,data\1_S-6.csv,20,3.053759492348517,2.001309307753893,0.8290155196979421,4.399864757510363,2.001309307753893,4.949978925908944
113,data\1_S-6.csv,30,0.6616315454047025,2.8758400900404943,4.735312554782918,2.3907096778655346,2.8758400900404943,1.1719061933164738
114,data\1_S-6.csv,40,1.8154121853645282,3.2214327224410306,3.2778392243914536,2.5461929166560875,3.2214327224410306,3.0045898440710985
115,data\1_S-6.csv,50,1.296886856905884,1.4915193295518268,0.6728501717871729,0.639996196106986,1.4915193295518268,1.9737040590938761
116,data\1_S-6.csv,60,0.8015748472732784,0.696411033119271,0.26372552323457404,0.5934316617703056,0.696411033119271,1.0438148406506542
117,data\1_S-6.csv,70,0.7876144436121876,0.6730390296235668,0.3217870993721718,0.1265165575151855,0.6730390296235668,0.8848022965429507
118,data\1_S-6.csv,80,0.8779263334065708,0.7750307740182709,0.5374422060703334,0.4493235452909501,0.7750307740182709,0.8055827182868924
119,data\1_S-6.csv,90,0.7501681896633152,0.6416649676648516,0.3558228026883899,0.12849860415305325,0.6416649676648516,0.5189720146847918
120,data\1_S-7.csv,20,5.365254081514151,3.8657561591156813,3.8093740674211998,6.2385985725116875,3.8657561591156813,12.931787976643314
121,data\1_S-7.csv,30,6.020986058758559,6.135746944313514,6.748313062661424,7.534740868368928,6.135746944313514,12.642457532575591
122,data\1_S-7.csv,40,5.674619852269969,4.703357957475107,3.8463807465185167,5.468678771443814,4.703357957475107,10.682921494145674
123,data\1_S-7.csv,50,3.4690575924798996,1.8878183084882048,0.8755075833559937,1.6025113529316266,1.8878183084882048,6.0995707396998
124,data\1_S-7.csv,60,2.7451423754747624,1.4731986021963825,0.8469142936908258,1.2925956551006061,1.4731986021963825,4.257652913170311
125,data\1_S-7.csv,70,2.7072833040182207,1.5925145664383469,1.156536439526758,1.5625936995519176,1.5925145664383469,3.8279131225302976
126,data\1_S-7.csv,80,2.621881865553797,1.7290734621115118,1.3650423959522893,1.721165557371262,1.7290734621115118,3.000226554513077
127,data\1_S-7.csv,90,2.266894911924734,1.4570027185864196,0.9445565509743197,1.0957970213384967,1.4570027185864196,2.2733706960531137
128,data\1_S-8.csv,20,18.11867407113544,14.215247739318466,9.511025244297006,22.404300227967695,13.446664866431115,26.01883685539876
129,data\1_S-8.csv,30,14.514699952893631,11.335799950369877,8.947236678349666,17.58355261139789,10.86796392608233,18.834907128584675
130,data\1_S-8.csv,40,11.075185948305768,6.8509390887115895,2.6457376862208544,9.530043636696428,6.673867126195534,13.50020958026542
131,data\1_S-8.csv,50,7.186567380657684,2.8339403044579425,1.4744207009933934,3.85833262551545,2.7885364868377245,7.98665931754185
132,data\1_S-8.csv,60,4.170061258682651,0.9040062070909864,2.733241309408221,1.1686720201047711,0.9105324134896468,3.986163533267458
133,data\1_S-8.csv,70,1.5780417387192855,1.4050145672359917,2.4869013753578524,0.35952798393250346,1.4178734518905698,0.8413080660591419
134,data\1_S-8.csv,80,0.5058499106073733,1.6205084705479829,1.950904027163278,0.4184494053158285,1.6366433460233913,0.23664910840155073
135,data\1_S-8.csv,90,0.4578779578295943,1.6313760499123662,1.4543709314629694,0.2256783271406,1.6521997346239476,0.4691400149420417
136,data\1_S-9.csv,20,23.23466856539556,14.38965667065365,5.812478485735811,11.415193360584711,17.60095766072406,35.798616223799556
137,data\1_S-9.csv,30,8.740016212536279,1.254088481183067,5.286134059469931,6.8867355672344175,4.699099274275911,11.926173764268128
138,data\1_S-9.csv,40,0.7725497801920852,4.342346270472876,6.044221052095922,8.128363400745855,0.8423842661623222,0.2591634095472699
139,data\1_S-9.csv,50,1.604201044849245,4.046644394358106,3.936626436981537,6.002530432463326,0.828713418284349,2.384399117848659
140,data\1_S-9.csv,60,1.3390917223895678,2.428693627890554,1.2271797874647459,3.816309142062488,1.0597756937496738,1.7585285077495598
141,data\1_S-9.csv,70,1.2202180455836111,1.9103128992797382,0.771291803280165,3.0048787355486817,1.310797523750748,1.346145339351395
142,data\1_S-9.csv,80,0.5617299433168577,0.9928155840050683,0.4728782399995845,1.4040243056990842,1.8418478186652112,0.6723892700070877
143,data\1_S-9.csv,90,0.22486696052940594,0.5792833717765682,0.5607951645765684,1.3539869222261414,2.1243071866986516,0.4806282542646869
144,data\1_SP-11.csv,20,1.7081991927226081,7.2313561231667896,1.0953656139037249,6.18712689484869,3.5433619581079885,2.7577460356066013
145,data\1_SP-11.csv,30,1.5756064331383481,1.4508379762295698,4.667981912115056,10.672594578553554,1.617156571881448,2.3383819412964613
146,data\1_SP-11.csv,40,1.666416631660893,1.9147387544365118,2.7246884581594735,3.5102269392885606,2.0539228359031503,2.3988648053252746
147,data\1_SP-11.csv,50,2.292818865830556,3.0276355451630215,3.857923628067331,5.7946017504485265,3.032368564205978,3.384991365221879
148,data\1_SP-11.csv,60,1.889989812312286,1.7249795942495172,1.2640582684881747,2.526077644495358,2.0433210528715673,1.979183768159885
149,data\1_SP-11.csv,70,2.103608751730582,1.8058365765796776,1.2951201482171344,1.9073165276319612,2.238909008345376,1.5961519844577197
150,data\1_SP-11.csv,80,1.8788628904767846,1.162865729788941,0.31047591858649476,1.1848375699933602,2.0019114454225315,0.7574673332335351
151,data\1_SP-11.csv,90,1.6578045150943486,0.8013356838663631,0.08523995237079618,0.3893484790967483,1.835912955550954,0.38333311153473915
152,data\1_SP-13.csv,20,0.4372325497058458,3.6243420678089686,4.851065851031277,7.415206093573297,0.6251074747335184,1.7710273059890653
153,data\1_SP-13.csv,30,0.7131156843560439,1.182411372082287,0.8606939440943202,2.1000835574758305,0.49852265726353917,2.4215488717810274
154,data\1_SP-13.csv,40,0.4278189077600768,0.39601474936665476,0.4303011088176812,2.735854312131982,0.8957677532161553,1.6593554681574574
155,data\1_SP-13.csv,50,1.4339059010061033,1.9491290609659973,2.136544531646112,2.656249815428144,0.7047311863777824,3.555367659593287
156,data\1_SP-13.csv,60,0.39242710983822804,0.15258643592231405,0.8714892516916322,1.3278099872124942,0.5322267611739026,1.826726679179444
157,data\1_SP-13.csv,70,0.18072037145060008,0.2617744847181645,0.5737992763703951,1.261638455555825,0.691105669926377,1.538114979348677
158,data\1_SP-13.csv,80,0.17867732178011012,0.1735062337331057,0.20455691893679187,0.40809888582969184,0.698209101804319,1.4847208692700917
159,data\1_SP-13.csv,90,0.19491393115805777,0.12209966495242676,0.10135028752760396,0.4554548974773021,0.6823303798309936,1.457893307596379
160,data\1_SP-17.csv,20,18.507066346497727,18.605257986168017,18.699978439884738,8.520723473217428,9.226100175280822,27.98292250374635
161,data\1_SP-17.csv,30,5.320558014435307,4.776189146250437,16.926096406129528,31.302259975691005,4.6214332180141895,6.7712262129747955
162,data\1_SP-17.csv,40,1.7586801283380498,4.547990441524903,5.21303935131053,3.797922268658988,4.561169272178184,2.087240103886984
163,data\1_SP-17.csv,50,2.7919874072221913,3.499394713176624,3.424666858660793,3.6674731091011044,3.661841220811493,4.753699240913875
164,data\1_SP-17.csv,60,4.509512187046268,5.062010812243616,4.965508498242809,6.293231675366611,5.19153025332887,6.083450351519332
165,data\1_SP-17.csv,70,4.477434583027644,4.415713384649314,2.973290496836599,2.715851907697277,4.835842604836214,4.835569684490849
166,data\1_SP-17.csv,80,4.118355090968156,3.5969326524892806,1.60282498572747,1.6372084145126302,4.409162438716603,3.485338713566364
167,data\1_SP-17.csv,90,3.5226698829318543,2.7625898354405023,0.6674499662480333,0.9570607962268323,3.912308283959222,2.436228051133355
168,data\1_SP-18.csv,20,7.606253940268715,15.613827267689272,16.31429809958159,21.055177174811675,16.01873246119757,18.570240961687887
169,data\1_SP-18.csv,30,14.367568344429996,18.4759301869696,17.811077331371575,21.26918604052492,18.839682917325284,29.252580611697567
170,data\1_SP-18.csv,40,15.142173533690988,15.260101482485425,12.895880292773695,12.11525582622308,16.025220403227284,28.06859674552618
171,data\1_SP-18.csv,50,13.236830193943605,11.361940339119686,9.147532937341081,10.380721972228644,12.690863720611114,21.247994508968986
172,data\1_SP-18.csv,60,12.572109779868718,10.373045747898717,7.8403567771617455,7.475192965834482,12.053241768288808,17.242566043994316
173,data\1_SP-18.csv,70,11.391355252271676,8.991883569123548,5.798034930135011,5.204559449064496,10.965688729889084,14.234577645108516
174,data\1_SP-18.csv,80,8.7658521973087,6.517142595190262,3.02552883906568,3.1276197810755373,8.87611960090738,9.652567006884965
175,data\1_SP-18.csv,90,6.381586755011683,4.6267059923998515,1.47963200729406,2.0247272214014176,7.174463796974973,6.1492139826732455
176,data\1_SP-2.csv,20,7.251670001515235,4.035528221519683,1.768940800539829,6.821820576668616,2.489462690852944,12.351549624588728
177,data\1_SP-2.csv,30,6.394859481503299,3.334644752337675,1.892465100473458,6.494840643140869,2.1072941692190876,10.96773880812998
178,data\1_SP-2.csv,40,3.5150979054006277,1.030476235045081,0.5815497265283422,1.663475036364787,0.6352824649243111,6.831454185237476
179,data\1_SP-2.csv,50,2.162925795561472,0.7487742235720621,0.60621821951639,2.265307447579157,0.5469280850738427,4.812094374889455
180,data\1_SP-2.csv,60,1.5530356583388822,0.9400941478766079,0.9361513856359182,1.7749434198125569,0.7003402990927681,3.583445335172854
181,data\1_SP-2.csv,70,1.92956285477023,1.4854573892940488,1.542384094436538,2.159691403245862,1.191125682131134,3.256134742153506
182,data\1_SP-2.csv,80,1.7620101358819777,1.2590310165580139,0.6813073644257572,0.8336330267520252,1.015359141094122,2.6737570408162696
183,data\1_SP-2.csv,90,1.6752219272312727,1.1350087827397781,0.34980187958582465,0.6806276375598923,0.9247523614210207,2.359606626511095
184,data\1_SP-21.csv,20,42.12676455859104,38.90120020317653,37.22658345622938,34.309623185121495,41.718088947091374,74.12512857571585
185,data\1_SP-21.csv,30,33.64631516446726,25.29658461536414,18.696713585251256,15.38596010345607,30.561471155274536,53.322700065494814
186,data\1_SP-21.csv,40,20.49815346851365,13.283944333261775,8.03669888027985,4.568010914517468,20.510334180313954,29.75748908953392
187,data\1_SP-21.csv,50,16.49123687721858,10.449087808602119,5.519203486691371,1.9678403995436788,18.01891988306453,23.193971027143334
188,data\1_SP-21.csv,60,11.147105244244372,7.122962434632913,3.175364825607084,0.9753825221211637,14.617090212485024,15.185938487017665
189,data\1_SP-21.csv,70,7.597835933362693,5.075843395024002,1.996714419444735,0.41583681120581284,12.169507338053933,10.092257320529143
190,data\1_SP-21.csv,80,5.3839849473707835,3.963110348842146,1.7666792308581958,0.5075445221631049,10.439725199383387,6.52569514597667
191,data\1_SP-21.csv,90,4.047770694365581,3.216550040119223,1.2847238278822437,0.280779464110913,9.48544972279011,4.250756998837119
192,data\1_SP-23.csv,20,13.116024974500316,11.406415919730044,3.765506247399486,602.2836630636259,12.191707590091927,23.923046775405396
193,data\1_SP-23.csv,30,1.4112953886998152,0.8966962615790152,0.586859483898776,4.264442175046207,1.3311405338931415,2.678895051458994
194,data\1_SP-23.csv,40,0.503194490519577,1.246997021327698,1.893518739512354,3.8553845049761346,1.011465585089704,0.843393031303151
195,data\1_SP-23.csv,50,0.40177904473664083,1.3013884145405648,1.5432161449557766,1.6336735889893956,0.8320807816723674,0.46226549015170804
196,data\1_SP-23.csv,60,0.5378967117637476,0.983665873885793,0.9012969813708892,1.0010073396356354,0.8278345528564164,0.04731529797567191
197,data\1_SP-23.csv,70,0.4535655885338811,0.491565848929026,0.506019286829261,2.8099125224415813,1.1146050245412609,0.38557444858889767
198,data\1_SP-23.csv,80,0.5866926857702145,0.6017709913879816,0.9737862441170824,2.2594119811584648,1.460892813154599,0.7532984311519613
199,data\1_SP-23.csv,90,0.7117527371636706,0.6781729753686052,0.7357350650681013,0.6003291518938575,1.4891135231245114,0.5780290711276734
200,data\1_SP-24.csv,20,8.05208321507387,2.3775483088799723,0.8284886593422096,8.808339547201996,1.8054682221258365,12.256708834049562
201,data\1_SP-24.csv,30,4.754057585152563,1.8972328533869973,1.14346382775907,5.869420242870603,1.8346948063531192,6.763333674883654
202,data\1_SP-24.csv,40,3.7044220656872535,1.7774295583659288,1.600770661101458,5.438070310197358,1.487388512391807,5.0416487683838795
203,data\1_SP-24.csv,50,3.3814507465626766,2.2423339061827465,2.3743431468449008,5.156771184685447,0.7935985345444764,4.3162075572721506
204,data\1_SP-24.csv,60,2.9580616982955585,2.1138244336006364,1.936738251439519,3.911737118094992,0.7008325198972941,3.4983607937343777
205,data\1_SP-24.csv,70,2.053019642075373,1.3755461864353626,0.8259635802348708,1.9783233512007146,0.8315397306624637,2.133727284788961
206,data\1_SP-24.csv,80,0.925154070288001,0.4176762471904959,0.6829290262047738,0.48168303571445314,1.212222131618538,0.88306789224265
207,data\1_SP-24.csv,90,0.2631479686071642,0.2788168836221197,0.7768479019140757,0.669556803256403,1.498288156663679,0.4404124785364729
208,data\1_SP-27.csv,20,18.010609556858284,14.166985114707632,9.915165891602133,23.194832884944326,3.656394863473691,24.791256870866732
209,data\1_SP-27.csv,30,11.71354908610107,7.814156489676422,4.0848401856637375,13.855485533288206,2.9853163240886675,15.052317647589291
210,data\1_SP-27.csv,40,6.586066767787878,2.817013389041188,2.1778926038820683,5.688088848545767,4.590422827040999,7.541163703392897
211,data\1_SP-27.csv,50,3.3522604033921652,0.9786737289806023,3.494819318845624,2.6240804510051956,5.782538636584345,3.1411422304844905
212,data\1_SP-27.csv,60,1.3335052593426149,1.6158617009779779,2.930979658391043,1.965224999359457,6.167856737452781,0.5672384340131202
213,data\1_SP-27.csv,70,0.7395930072864558,1.742199982469519,2.0915616244173845,1.3781521788721838,6.043388875004583,0.35371090404748884
214,data\1_SP-27.csv,80,0.7129711553289985,1.9765310226371968,2.013838329825629,0.47991145803682334,6.111852384127282,0.8382121211179765
215,data\1_SP-27.csv,90,0.9512041354104962,1.8979783064509756,1.472466016784874,0.401096122731131,5.927546475798311,0.7494462753147673
216,data\1_SP-29.csv,20,58.11456968859943,54.20867884329497,39.61108050965662,72.7878344325526,47.176567041237234,79.76634044962634
217,data\1_SP-29.csv,30,42.261288398671475,37.208725595653966,19.481691221334845,55.65442483030424,33.51072091517887,59.396079737633926
218,data\1_SP-29.csv,40,30.26589551904199,25.41935167585668,8.824791212366963,39.27528850191659,24.03930285852246,43.74033540249678
219,data\1_SP-29.csv,50,22.045627271044555,17.410788234879284,3.834321033138491,28.384109882092144,17.082361204181726,32.80560900650579
220,data\1_SP-29.csv,60,12.58725003675586,8.625710340309544,0.7735301121039388,21.141175191142423,8.736739005847276,18.931538500183166
221,data\1_SP-29.csv,70,10.379782274387619,6.498289228635464,0.23684084569137315,17.61674109226546,6.623364989079403,14.046110736188723
222,data\1_SP-29.csv,80,9.388483891991743,5.731592744259239,0.2173229832348911,13.96446983079995,5.867370452446342,11.728430114724574
223,data\1_SP-29.csv,90,8.083201483420313,4.860118636658717,0.2637172037503133,11.355207422945249,4.998247642890794,9.505128470303845
224,data\1_SP-3.csv,20,2.7639666377013827,0.9505339793546425,1.0222593461911647,2.1271474494439353,1.889746668823346,5.625462848877987
225,data\1_SP-3.csv,30,1.7588046260832937,1.0346779977857292,0.6904824924392874,1.2190904976454986,1.0911784639097006,4.030450955314791
226,data\1_SP-3.csv,40,1.0122462164703974,0.3562513894553611,0.6380821442756859,0.9133417471727429,1.3412176434826666,2.873269221386522
227,data\1_SP-3.csv,50,0.875772435310304,0.597764287699386,0.5855513269386318,1.3473701648152487,0.8205124440118188,2.525210296311343
228,data\1_SP-3.csv,60,0.624543539369494,0.3742951816014111,0.2809099872726779,0.9231072880468726,0.9030900318430175,1.952983904963503
229,data\1_SP-3.csv,70,0.8332515554331394,0.6103887926575137,0.6178974084951281,1.11269087059214,0.7356865313899721,1.9233485531789825
230,data\1_SP-3.csv,80,0.9419012904046294,0.6892736180113511,0.5956241281720231,0.869350077634995,0.691929755323423,1.7907405530904157
231,data\1_SP-3.csv,90,1.0498331495160493,0.7424376198659032,0.522772797378362,0.6773245400829682,0.6197977029042671,1.6192326419223946
232,data\1_SP-31.csv,20,19.33714932197116,14.109524841969442,8.55126975160453,16.3240970149211,7.796826333425127,29.016294421755674
233,data\1_SP-31.csv,30,14.93768169180386,11.575579244717796,11.27046813038168,14.889609790138776,7.408257853548278,20.689607566333564
234,data\1_SP-31.csv,40,7.225161923150376,3.1546066039808682,10.586590635842512,7.222394920036293,3.5712235463176905,7.176477334351773
235,data\1_SP-31.csv,50,2.057140529710824,11.165257759960324,16.466760388295498,11.063404181253127,11.111250850191475,3.980293867555588
236,data\1_SP-31.csv,60,3.129236548164459,9.471968574955419,8.654601282011694,5.753283664275471,9.626092065807585,5.815114167759361
237,data\1_SP-31.csv,70,3.493324425986982,6.647691615846848,4.423725798205054,3.1139471987914424,7.358201799611277,5.618117386075426
238,data\1_SP-31.csv,80,3.7614567295505226,5.439641426488154,3.4017208594955126,3.3922462564020117,6.468800659704724,5.137075517588528
239,data\1_SP-31.csv,90,3.6850586112356307,4.403414502163275,2.464704301411955,2.1002848993271788,5.7198909032835195,4.1671588382944265
240,data\1_SP-4.csv,20,14.1800105801406,3.1497257010769313,6.116492058476434,2.3716109308472393,2.9888371479513616,18.033498964791022
241,data\1_SP-4.csv,30,8.814180972034736,2.3841507421739756,3.4281001378778577,1.0193269965751968,2.421031029465271,10.14433645479312
242,data\1_SP-4.csv,40,4.020069458092881,4.266027202872742,5.052898274886464,6.595912285842589,4.856902549700719,2.9447648482440627
243,data\1_SP-4.csv,50,1.5655809586933982,4.421824166333213,4.498503991265344,3.6168109381332747,4.737919350452426,2.0241453132273364
244,data\1_SP-4.csv,60,2.8255889328529777,4.318780481087872,3.812224438799903,3.638592480485815,4.348949039715682,4.9441194385123595
245,data\1_SP-4.csv,70,3.0098355177291696,3.5706976401314443,2.0422680463516194,1.8948403042494955,3.665877481781085,3.8922112538999727
246,data\1_SP-4.csv,80,3.3383481132125388,3.533116526395827,1.6461241498695636,1.7187934268197498,3.8936071711885947,3.0551044132898255
247,data\1_SP-4.csv,90,3.500274980525205,3.4634537756934947,1.3053983171550954,1.0905947127296258,4.12898100426122,2.4002749805252392
248,data\1_SP-5.csv,20,19.01982206124973,18.231684083564126,17.2031688944356,22.856744017504607,6.552090153390118,29.24820828829735
249,data\1_SP-5.csv,30,8.619850907506631,1.8732529579056163,3.8839833263646395,6.122867503531058,1.9684593608640961,12.881057035896788
250,data\1_SP-5.csv,40,4.373489591201087,2.4254200148711518,5.582645142047572,5.99503921049501,3.5165520880592576,6.185413783319461
251,data\1_SP-5.csv,50,0.7840007911603155,3.1212360913344726,3.341409408531209,3.3018738611819773,4.031962434343803,0.27035601893521743
252,data\1_SP-5.csv,60,1.385233520758738,2.9946337522798414,2.4356737478699,2.51980850430202,4.095636621635693,1.5725633701757147
253,data\1_SP-5.csv,70,1.3376003278793556,2.155169165017391,0.8191776089203991,1.217087121208194,3.848020332177294,1.014221305019987
254,data\1_SP-5.csv,80,1.5794214196008316,2.145853516105067,0.9055601727131877,1.6616812187056658,4.1534635206323545,0.8370904136937725
255,data\1_SP-5.csv,90,1.6476033879915875,1.9262754528654276,0.6184697506069872,0.9602577234857359,4.3428653785188365,0.5191583472790171
256,data\1_SP-6.csv,20,18.823368133620573,9.711298695408024,4.671217951931806,18.89361772643047,5.532272743878993,24.49568538525625
257,data\1_SP-6.csv,30,7.2850741787827795,3.40676523188954,7.403579031219248,13.020198301363921,4.910197270345021,5.4312582371888425
258,data\1_SP-6.csv,40,4.150725891586423,3.779152594657274,4.632370831812934,2.932826525485085,5.162388657496632,0.45840271174347436
259,data\1_SP-6.csv,50,3.590739524819434,5.876445324519404,6.4793926042065815,6.519352298532605,6.766107158344899,8.441776378973657
260,data\1_SP-6.csv,60,5.257258756772454,6.6405512761123,6.127938350147389,7.02026603377924,7.704340475747744,9.532189678105453
261,data\1_SP-6.csv,70,6.499622877299118,7.338520754512718,6.13253420808361,6.2149369211993335,8.734147830763076,9.192764904676551
262,data\1_SP-6.csv,80,7.197584388519787,7.16748519483013,4.84690165747437,4.571515896385614,9.240389511522254,7.989072293220033
263,data\1_SP-6.csv,90,7.258476142471198,6.391707237133926,3.199691472382279,2.5189317643384292,9.378416986074912,6.36436546810836
264,data\1_SP-8.csv,20,13.724402266628424,3.8474261858726027,3.8761389145379472,4.297387192543221,2.979953000441522,28.727756112879206
265,data\1_SP-8.csv,30,8.117162803997703,1.8192082930013656,3.1881100613455,10.859572755132064,3.763598263372951,17.496525503906014
266,data\1_SP-8.csv,40,5.601929975825574,3.1750076497104125,3.908802713266494,4.600704081525033,4.351429810828936,12.288857095097796
267,data\1_SP-8.csv,50,5.418106443167945,4.1632861639884515,5.009236061811986,6.812329827763838,4.8346123593513175,11.576585817379168
268,data\1_SP-8.csv,60,4.541530280936754,3.5537333439080747,3.1217704199084597,4.588534853343822,4.8770768338388235,8.296402009884787
269,data\1_SP-8.csv,70,5.02028811636518,3.9026228580560693,3.2060451766201425,3.7664338358837894,5.709616335803563,7.307266716541278
270,data\1_SP-8.csv,80,5.435344889150946,3.916965279400222,2.7451449694245005,3.2045994621080216,6.627286940187872,6.2159908585936705
271,data\1_SP-8.csv,90,5.48054191461318,3.437963134670824,1.7657518311792497,1.7600499561277778,7.513525270362268,4.889949188131595
1 File Data_usage RMSE_hyper_original RMSE_hyper_nonlinear RMSE_step Final_error_hyper_original Final_error_hyper_nonlinear Final_error_step
2 0 data\1_S-1.csv 20 23.478646116979654 16.776209296837532 11.120719833394293 31.147089838760067 16.776209296837532 34.39703383058222
3 1 data\1_S-1.csv 30 12.402243644854485 5.208861608476322 2.150195941283636 13.42602435195194 5.208861608476322 17.88176228477299
4 2 data\1_S-1.csv 40 5.5477225601078475 2.4340047901478026 6.124088322692104 3.137413028656972 2.4340047901478026 6.698331612401873
5 3 data\1_S-1.csv 50 1.4243573608600337 5.339485942822988 7.291387329162888 1.5491904788507092 5.339485942822988 0.18927190226409607
6 4 data\1_S-1.csv 60 1.2405425139403812 5.484226338578135 5.7050750283865845 2.4292610036214497 5.484226338578135 1.4831090032904086
7 5 data\1_S-1.csv 70 1.597066962397822 4.027720666840552 2.7608737957120946 1.0042867085237617 4.027720666840552 1.540451618948424
8 6 data\1_S-1.csv 80 1.5539368201809547 3.3570950843708673 1.8277216110401846 0.3671659497912856 3.3570950843708673 1.1246294275445763
9 7 data\1_S-1.csv 90 1.1605550014743073 2.5042477994964543 0.8365472478337495 0.3815598208090165 2.5042477994964543 0.5605550014742988
10 8 data\1_S-10.csv 20 2.250454268092718 11.945795822232032 14.022426652187274 5.458857525298658 12.78210944667846 4.480921480938093
11 9 data\1_S-10.csv 30 1.4798556806649208 4.5201471879813395 1.2820054079359062 5.56697174346722 6.187128156863005 2.9409475590047975
12 10 data\1_S-10.csv 40 2.5831593209425114 1.5068804246967553 3.9556125069100414 7.327682225114709 1.2159945876728537 4.603069473692216
13 11 data\1_S-10.csv 50 3.0493487660606946 2.5290835903126405 3.781342127791944 6.543763194275195 0.7580449556824689 4.96050056705603
14 12 data\1_S-10.csv 60 2.753018935138921 2.4773563031889623 2.4829685067950007 5.197657553387721 1.1114680943428539 4.144430467497713
15 13 data\1_S-10.csv 70 2.057161629717554 1.852262568800247 1.125746596630284 3.5981758084098927 0.7917721159345887 2.9539000368872053
16 14 data\1_S-10.csv 80 1.385275833572099 1.222635822549523 0.21141515162913316 3.0372816823669457 0.28624544571854166 2.055521208384789
17 15 data\1_S-10.csv 90 1.2289805279797732 1.1001404713990144 0.17079561302316265 2.659062579968389 0.22576196364864093 1.687906445950702
18 16 data\1_S-11.csv 20 12.780165484446645 3.543442987743452 3.826654330541223 14.142903035702759 2.8057093191787796 18.591421005556583
19 17 data\1_S-11.csv 30 8.950467372059691 1.8083726479927158 0.600058015048404 10.92937956217384 1.2372043888069384 13.038668567087655
20 18 data\1_S-11.csv 40 6.0781469397310275 2.0814044264045988 1.9762362900266666 8.545036423072245 1.6105013874823666 8.905430697186034
21 19 data\1_S-11.csv 50 4.354144249638527 1.830001873935883 1.5994546831172567 6.658170772673151 1.4688426083053616 6.377174516981569
22 20 data\1_S-11.csv 60 3.0600926275659055 1.5911267267597402 1.253477114943287 5.316149584849218 1.336850488399163 4.339127785422562
23 21 data\1_S-11.csv 70 2.0782232665915683 1.023377922742072 0.4250838856090123 3.7693273765738313 0.8323985798147107 2.8678089286949273
24 22 data\1_S-11.csv 80 1.3106083121407994 0.46948359525194167 0.24458020822699267 3.2221638079518704 0.29468631398794154 1.9290492102943517
25 23 data\1_S-11.csv 90 1.1328843800677029 0.4200675824984277 0.12988845884140596 2.8519660229689157 0.2547636891884459 1.574556969531173
26 24 data\1_S-12.csv 20 2.7120407627429746 7.298582927104371 8.599569444991946 13.542896407505745 2.6778432237681407 4.889581454963832
27 25 data\1_S-12.csv 30 5.402183151249969 7.687632014330983 7.420643449273505 12.39344963386265 3.7415741342788835 8.386482482784231
28 26 data\1_S-12.csv 40 4.394685384926156 4.845951876514215 2.4643841148224466 6.954026249999055 2.412851448737444 6.4929381725025905
29 27 data\1_S-12.csv 50 3.2605713395995304 3.1319161474217667 0.8446842192946161 4.935018097624205 1.4510820822297386 4.728667992653101
30 28 data\1_S-12.csv 60 1.9783184512590368 1.569473731965631 0.6435496596366582 2.850940115587415 0.5703161045481381 2.95931761635174
31 29 data\1_S-12.csv 70 1.0000004382811707 0.5560357418512717 0.8212550238314622 2.1698581422986623 0.38681115435021735 1.7765112770664189
32 30 data\1_S-12.csv 80 0.8241746816026769 0.45382185232957534 0.3656309038475283 1.8254973815355815 0.3919724859787349 1.4696145959291016
33 31 data\1_S-12.csv 90 0.7085626123177089 0.417602660005857 0.07822953821441234 1.4335822794754267 0.32528847438603103 1.199407747704015
34 32 data\1_S-15.csv 20 0.2880082260432656 0.31324495710969785 0.3234024531936505 0.4022129400876201 0.31324495710969785 0.5801711693735285
35 33 data\1_S-15.csv 30 0.2612327425554409 0.1982982487483713 0.13414140830370697 0.15485897379953692 0.1982982487483713 0.45587398459380846
36 34 data\1_S-15.csv 40 0.1627146650925451 0.0847291405415234 0.033866481436163935 0.038989961050724664 0.0847291405415234 0.26057510197224854
37 35 data\1_S-15.csv 50 0.09403647123965381 0.03947355449793594 0.010432214231313604 0.016236014905314802 0.03947355449793594 0.14077931124954113
38 36 data\1_S-15.csv 60 0.05952893520483399 0.023106062873209498 0.005335595378394103 0.005718866196795912 0.023106062873209498 0.08386450933302625
39 37 data\1_S-15.csv 70 0.04473399276446019 0.016377408145597953 0.003981572071803215 0.0022423032047758674 0.016377408145597953 0.06066449965583809
40 38 data\1_S-15.csv 80 0.033746284419315604 0.014448091335809161 0.006681360997480904 0.007188935630891185 0.014448091335809161 0.04113326606019707
41 39 data\1_S-15.csv 90 0.02766081220100747 0.013596987999911315 0.007021701057583198 0.006864032090390862 0.013596987999911315 0.028039740265827118
42 40 data\1_S-16.csv 20 3.3040962181845503 2.5459436259747408 1.45493861867461 3.3531886022017394 2.5459436259747408 5.830754051237456
43 41 data\1_S-16.csv 30 3.397577659982119 2.1593623899054246 3.4385208065435036 6.806972770490538 2.1593623899054246 5.463521952189097
44 42 data\1_S-16.csv 40 3.5615235188381624 3.0031596961493916 3.530913385578609 6.7713581454297 3.0031596961493916 5.321234213446772
45 43 data\1_S-16.csv 50 2.979305758737618 2.456347223799883 2.003799792080917 4.62235381428586 2.456347223799883 4.208604160138584
46 44 data\1_S-16.csv 60 2.440684687417658 1.9674064134436176 1.3030765444312726 3.7587013753882332 1.9674064134436176 3.219011843360569
47 45 data\1_S-16.csv 70 1.9611474785668164 1.5509606603565687 0.8011290107342396 2.4317880070651103 1.5509606603565687 2.378298589011777
48 46 data\1_S-16.csv 80 1.147210901886969 0.7794500638783542 0.25842333575239057 1.0220331261428133 0.7794500638783542 1.4548249995786477
49 47 data\1_S-16.csv 90 0.6658320594808093 0.3599471149325066 0.3460836953388925 1.153154586718134 0.3599471149325066 0.9885512420661939
50 48 data\1_S-17.csv 20 14.817149675077845 11.00820026665355 9.160227086888597 19.49554522452195 11.00820026665355 22.114584610703353
51 49 data\1_S-17.csv 30 12.619854078927927 9.134481442421977 6.9071576082667425 16.03629997348982 9.134481442421977 17.657859773028946
52 50 data\1_S-17.csv 40 9.602067756400896 6.47474795338568 4.084271910648953 11.477366749731411 6.47474795338568 12.643407243916172
53 51 data\1_S-17.csv 50 6.782687807338599 3.914529880205498 1.207594132519305 6.842442053294446 3.914529880205498 8.457968207762192
54 52 data\1_S-17.csv 60 4.4393395624054275 2.0008384382997764 0.7688263011902206 4.276987675473648 2.0008384382997764 5.234788630782006
55 53 data\1_S-17.csv 70 2.931857444605733 1.0695640076905621 0.9273110304857721 3.2225789084675727 1.0695640076905621 3.2388963393675
56 54 data\1_S-17.csv 80 1.630643658296253 0.3125213348966345 1.1612740930672463 1.8326739324209824 0.3125213348966345 1.8464644601669704
57 55 data\1_S-17.csv 90 0.9032383117232653 0.24827782525448813 0.9587919569314237 1.674370356936783 0.24827782525448813 1.184956388177838
58 56 data\1_S-18.csv 20 4.8569683354725655 8.370185056504068 9.972599263436887 14.865095422926293 8.370185056504068 9.978111512340448
59 57 data\1_S-18.csv 30 7.502879610626537 9.170910252757494 9.19044618685778 13.6454883261436 9.170910252757494 13.302444006063652
60 58 data\1_S-18.csv 40 7.138752761075896 7.328752844478417 5.329825897187873 9.095760769015405 7.328752844478417 11.980402617417937
61 59 data\1_S-18.csv 50 5.233986629512829 4.185885403593828 0.783413059416807 3.6322332834046427 4.185885403593828 8.773198466234518
62 60 data\1_S-18.csv 60 3.67241324585774 2.169070128892058 0.7783608535039951 2.154039188017579 2.169070128892058 6.401575843298858
63 61 data\1_S-18.csv 70 2.5424291135664294 1.1802477097783282 0.4923296701790672 2.064256197436636 1.1802477097783282 4.5863843876741015
64 62 data\1_S-18.csv 80 2.316459386629839 1.1667965600421817 0.4129961986646059 1.7712363628695194 1.1667965600421817 3.931515685511968
65 63 data\1_S-18.csv 90 2.2309174292325835 1.2202603294310326 0.6119224915467529 1.215885316632567 1.2202603294310326 3.3551102882782544
66 64 data\1_S-19.csv 20 0.4813921356094701 0.38645090597916665 0.262085380838314 0.38645090597916665 0.14662814292741366
67 65 data\1_S-19.csv 30 0.2542390778983757 0.4486975357849197 0.9538761866430289 1.4578288563061808 0.4486975357849197 0.44082650844485194
68 66 data\1_S-19.csv 40 0.31581380528892206 0.3508458151659684 0.3483818926223097 0.38722202897310515 0.3508458151659684 0.5728220719268533
69 67 data\1_S-19.csv 50 0.4289141972590556 0.47865360212276115 0.5717551474263084 0.17735833501852744 0.47865360212276115 0.732654069325152
70 68 data\1_S-19.csv 60 0.6124097428850761 0.6727217066022969 0.7994377009874323 0.5650083536577103 0.6727217066022969 0.9069841958082296
71 69 data\1_S-19.csv 70 0.5623432486393993 0.5988132191913642 0.5105750432737622 0.3048821664614563 0.5988132191913642 0.744300913392955
72 70 data\1_S-19.csv 80 0.4580512395915517 0.5006204677271572 0.32797151283517634 0.22446438982174222 0.5006204677271572 0.5387456623125226
73 71 data\1_S-19.csv 90 0.3623750170500113 0.42372832622671464 0.2209220631754878 0.18242844832152194 0.42372832622671464 0.3623750170500113
74 72 data\1_S-2.csv 20 29.13824269821142 32.97006600177633 32.21195457337266 50.98953962583674 32.97006600177633 75.5054893685952
75 73 data\1_S-2.csv 30 29.094378311540368 26.78893971941293 24.057354502241488 45.95952965698194 26.78893971941293 69.77267293076979
76 74 data\1_S-2.csv 40 25.668812328945442 19.737664954989953 16.573301668930714 24.389044284038413 19.737664954989953 52.38088891618217
77 75 data\1_S-2.csv 50 21.583732110692612 13.578484970142826 9.284277402492405 12.336281678713968 13.578484970142826 37.166154284409075
78 76 data\1_S-2.csv 60 16.62078573542056 8.641182434779754 4.371591913792901 6.562214890034458 8.641182434779754 25.272718668872173
79 77 data\1_S-2.csv 70 10.811437650017501 4.671426204672148 1.3020176782522703 3.462313585656565 4.671426204672148 14.045796578049647
80 78 data\1_S-2.csv 80 9.173065296379605 3.754546671085857 0.7442237783985166 2.5270190520652127 3.754546671085857 10.64978363276596
81 79 data\1_S-2.csv 90 7.478016107420814 3.0808772341682698 0.5970427746556197 2.4566348296251874 3.0808772341682698 6.8780161074208195
82 80 data\1_S-20.csv 20 1.5991320251442396 0.734274177067469 0.5024653897933992 0.734274177067469 1.6181966710915923
83 81 data\1_S-20.csv 30 0.983467706082507 0.5566263918424004 1.1599839311022724 0.6891888364909496 0.5566263918424004 0.6205457463884416
84 82 data\1_S-20.csv 40 1.0445947683198489 1.8102553204615202 1.7764261241719057 3.0507083248841558 1.8102553204615202 2.0625130717155606
85 83 data\1_S-20.csv 50 1.0135995303584442 1.2428489549759612 0.8261289496652552 1.3546541436513129 1.2428489549759612 1.8588171166887548
86 84 data\1_S-20.csv 60 0.9359575571420113 0.9239063949715502 0.6167255864523585 0.9803172858616156 0.9239063949715502 1.5791947067579333
87 85 data\1_S-20.csv 70 1.0160045814445942 0.9713676236655032 0.8095088685500043 0.9647285147730768 0.9713676236655032 1.4728692385142317
88 86 data\1_S-20.csv 80 0.9330057968496768 0.8398552977157308 0.6027524648118354 0.8579451894453256 0.8398552977157308 1.147925727916272
89 87 data\1_S-20.csv 90 0.7810454819952506 0.6916580785283166 0.4052801175930112 0.5899582590956429 0.6916580785283166 0.7810454819952506
90 88 data\1_S-3.csv 20 31.079801282684922 20.79725899625463 6.818060318938833 28.308551362298864 20.79725899625463 47.238716900050875
91 89 data\1_S-3.csv 30 15.753554144633085 2.6352848578842987 6.859721543987546 4.702100098681567 2.6352848578842987 23.36498322819596
92 90 data\1_S-3.csv 40 6.0485793575074664 7.374862524981409 9.794646700171079 5.6935020904941345 7.374862524981409 6.835073565304668
93 91 data\1_S-3.csv 50 2.094048920603935 8.202986587700892 8.159727175403006 6.144855383897656 8.202986587700892 0.270197824992394
94 92 data\1_S-3.csv 60 1.4543199299679703 7.237301240068834 5.981863502688744 5.584626897838916 7.237301240068834 2.1218242419079445
95 93 data\1_S-3.csv 70 2.19394289660755 5.393455869919254 3.609877616358329 3.771152629539646 5.393455869919254 2.6421432980650223
96 94 data\1_S-3.csv 80 2.4322158153771154 4.8844137991230685 2.9524536403368833 2.6133509468069507 4.8844137991230685 2.352481088106998
97 95 data\1_S-3.csv 90 2.734140059942362 4.359378633827035 2.227164224763243 2.404017139031467 4.359378633827035 1.5341400599423594
98 96 data\1_S-4.csv 20 28.378259539192584 20.76394535575388 14.033947286055122 33.956392919022214 20.76394535575388 45.99094608090661
99 97 data\1_S-4.csv 30 16.61106216131759 8.942811079170239 3.4524341187436187 18.710539650936383 8.942811079170239 26.84827159237942
100 98 data\1_S-4.csv 40 9.797519852171225 2.5496599587282107 3.319788316482909 8.412714329822519 2.5496599587282107 14.194926674696305
101 99 data\1_S-4.csv 50 6.125834599642608 2.6040335337737477 5.850573674531381 1.9179721973123014 2.6040335337737477 7.993250496636364
102 100 data\1_S-4.csv 60 2.8788592236974906 4.206983125971776 5.795766591760959 1.7072180407065176 4.206983125971776 3.461211024688268
103 101 data\1_S-4.csv 70 0.4085160425472198 4.062087348253181 3.7531585944730246 1.6008828051224104 4.062087348253181 0.6633379205306653
104 102 data\1_S-4.csv 80 0.47595142031207355 3.724576037953115 2.999485225439125 0.5935342876852995 3.724576037953115 0.5578013561442674
105 103 data\1_S-4.csv 90 0.4702196369976548 2.770238687192787 1.4789221203064358 0.09388708245413113 2.770238687192787 0.729780363002348
106 104 data\1_S-5.csv 20 1.967727423890477 1.3254354393668206 1.945810601215972 1.9607824925465678 1.3254354393668206 0.1874346159763789
107 105 data\1_S-5.csv 30 1.4382082353192773 1.919434236053275 2.533465805806511 2.023289939059952 1.919434236053275 2.9894571542230324
108 106 data\1_S-5.csv 40 2.7465167206481573 4.409602595386762 5.291501886071811 5.725165924900896 4.409602595386762 6.266108561419188
109 107 data\1_S-5.csv 50 3.461920761656759 4.381575529957983 4.275659286339894 5.075875198611303 4.381575529957983 6.925871218956949
110 108 data\1_S-5.csv 60 4.361846022920693 4.604849959229172 4.196889816830964 4.208858373774062 4.604849959229172 6.861029398211379
111 109 data\1_S-5.csv 70 4.3969327856562845 4.205632373475578 3.4012384137145903 3.2719092143242556 4.205632373475578 6.121369526288497
112 110 data\1_S-5.csv 80 4.096266723294103 3.499985586090912 2.3855823394470796 2.1966796537602513 3.499985586090912 4.9464799766905685
113 111 data\1_S-5.csv 90 3.4604082851893114 2.689997383766356 1.47402197284386 1.2253835699076183 2.689997383766356 3.58886013074747
114 112 data\1_S-6.csv 20 3.053759492348517 2.001309307753893 0.8290155196979421 4.399864757510363 2.001309307753893 4.949978925908944
115 113 data\1_S-6.csv 30 0.6616315454047025 2.8758400900404943 4.735312554782918 2.3907096778655346 2.8758400900404943 1.1719061933164738
116 114 data\1_S-6.csv 40 1.8154121853645282 3.2214327224410306 3.2778392243914536 2.5461929166560875 3.2214327224410306 3.0045898440710985
117 115 data\1_S-6.csv 50 1.296886856905884 1.4915193295518268 0.6728501717871729 0.639996196106986 1.4915193295518268 1.9737040590938761
118 116 data\1_S-6.csv 60 0.8015748472732784 0.696411033119271 0.26372552323457404 0.5934316617703056 0.696411033119271 1.0438148406506542
119 117 data\1_S-6.csv 70 0.7876144436121876 0.6730390296235668 0.3217870993721718 0.1265165575151855 0.6730390296235668 0.8848022965429507
120 118 data\1_S-6.csv 80 0.8779263334065708 0.7750307740182709 0.5374422060703334 0.4493235452909501 0.7750307740182709 0.8055827182868924
121 119 data\1_S-6.csv 90 0.7501681896633152 0.6416649676648516 0.3558228026883899 0.12849860415305325 0.6416649676648516 0.5189720146847918
122 120 data\1_S-7.csv 20 5.365254081514151 3.8657561591156813 3.8093740674211998 6.2385985725116875 3.8657561591156813 12.931787976643314
123 121 data\1_S-7.csv 30 6.020986058758559 6.135746944313514 6.748313062661424 7.534740868368928 6.135746944313514 12.642457532575591
124 122 data\1_S-7.csv 40 5.674619852269969 4.703357957475107 3.8463807465185167 5.468678771443814 4.703357957475107 10.682921494145674
125 123 data\1_S-7.csv 50 3.4690575924798996 1.8878183084882048 0.8755075833559937 1.6025113529316266 1.8878183084882048 6.0995707396998
126 124 data\1_S-7.csv 60 2.7451423754747624 1.4731986021963825 0.8469142936908258 1.2925956551006061 1.4731986021963825 4.257652913170311
127 125 data\1_S-7.csv 70 2.7072833040182207 1.5925145664383469 1.156536439526758 1.5625936995519176 1.5925145664383469 3.8279131225302976
128 126 data\1_S-7.csv 80 2.621881865553797 1.7290734621115118 1.3650423959522893 1.721165557371262 1.7290734621115118 3.000226554513077
129 127 data\1_S-7.csv 90 2.266894911924734 1.4570027185864196 0.9445565509743197 1.0957970213384967 1.4570027185864196 2.2733706960531137
130 128 data\1_S-8.csv 20 18.11867407113544 14.215247739318466 9.511025244297006 22.404300227967695 13.446664866431115 26.01883685539876
131 129 data\1_S-8.csv 30 14.514699952893631 11.335799950369877 8.947236678349666 17.58355261139789 10.86796392608233 18.834907128584675
132 130 data\1_S-8.csv 40 11.075185948305768 6.8509390887115895 2.6457376862208544 9.530043636696428 6.673867126195534 13.50020958026542
133 131 data\1_S-8.csv 50 7.186567380657684 2.8339403044579425 1.4744207009933934 3.85833262551545 2.7885364868377245 7.98665931754185
134 132 data\1_S-8.csv 60 4.170061258682651 0.9040062070909864 2.733241309408221 1.1686720201047711 0.9105324134896468 3.986163533267458
135 133 data\1_S-8.csv 70 1.5780417387192855 1.4050145672359917 2.4869013753578524 0.35952798393250346 1.4178734518905698 0.8413080660591419
136 134 data\1_S-8.csv 80 0.5058499106073733 1.6205084705479829 1.950904027163278 0.4184494053158285 1.6366433460233913 0.23664910840155073
137 135 data\1_S-8.csv 90 0.4578779578295943 1.6313760499123662 1.4543709314629694 0.2256783271406 1.6521997346239476 0.4691400149420417
138 136 data\1_S-9.csv 20 23.23466856539556 14.38965667065365 5.812478485735811 11.415193360584711 17.60095766072406 35.798616223799556
139 137 data\1_S-9.csv 30 8.740016212536279 1.254088481183067 5.286134059469931 6.8867355672344175 4.699099274275911 11.926173764268128
140 138 data\1_S-9.csv 40 0.7725497801920852 4.342346270472876 6.044221052095922 8.128363400745855 0.8423842661623222 0.2591634095472699
141 139 data\1_S-9.csv 50 1.604201044849245 4.046644394358106 3.936626436981537 6.002530432463326 0.828713418284349 2.384399117848659
142 140 data\1_S-9.csv 60 1.3390917223895678 2.428693627890554 1.2271797874647459 3.816309142062488 1.0597756937496738 1.7585285077495598
143 141 data\1_S-9.csv 70 1.2202180455836111 1.9103128992797382 0.771291803280165 3.0048787355486817 1.310797523750748 1.346145339351395
144 142 data\1_S-9.csv 80 0.5617299433168577 0.9928155840050683 0.4728782399995845 1.4040243056990842 1.8418478186652112 0.6723892700070877
145 143 data\1_S-9.csv 90 0.22486696052940594 0.5792833717765682 0.5607951645765684 1.3539869222261414 2.1243071866986516 0.4806282542646869
146 144 data\1_SP-11.csv 20 1.7081991927226081 7.2313561231667896 1.0953656139037249 6.18712689484869 3.5433619581079885 2.7577460356066013
147 145 data\1_SP-11.csv 30 1.5756064331383481 1.4508379762295698 4.667981912115056 10.672594578553554 1.617156571881448 2.3383819412964613
148 146 data\1_SP-11.csv 40 1.666416631660893 1.9147387544365118 2.7246884581594735 3.5102269392885606 2.0539228359031503 2.3988648053252746
149 147 data\1_SP-11.csv 50 2.292818865830556 3.0276355451630215 3.857923628067331 5.7946017504485265 3.032368564205978 3.384991365221879
150 148 data\1_SP-11.csv 60 1.889989812312286 1.7249795942495172 1.2640582684881747 2.526077644495358 2.0433210528715673 1.979183768159885
151 149 data\1_SP-11.csv 70 2.103608751730582 1.8058365765796776 1.2951201482171344 1.9073165276319612 2.238909008345376 1.5961519844577197
152 150 data\1_SP-11.csv 80 1.8788628904767846 1.162865729788941 0.31047591858649476 1.1848375699933602 2.0019114454225315 0.7574673332335351
153 151 data\1_SP-11.csv 90 1.6578045150943486 0.8013356838663631 0.08523995237079618 0.3893484790967483 1.835912955550954 0.38333311153473915
154 152 data\1_SP-13.csv 20 0.4372325497058458 3.6243420678089686 4.851065851031277 7.415206093573297 0.6251074747335184 1.7710273059890653
155 153 data\1_SP-13.csv 30 0.7131156843560439 1.182411372082287 0.8606939440943202 2.1000835574758305 0.49852265726353917 2.4215488717810274
156 154 data\1_SP-13.csv 40 0.4278189077600768 0.39601474936665476 0.4303011088176812 2.735854312131982 0.8957677532161553 1.6593554681574574
157 155 data\1_SP-13.csv 50 1.4339059010061033 1.9491290609659973 2.136544531646112 2.656249815428144 0.7047311863777824 3.555367659593287
158 156 data\1_SP-13.csv 60 0.39242710983822804 0.15258643592231405 0.8714892516916322 1.3278099872124942 0.5322267611739026 1.826726679179444
159 157 data\1_SP-13.csv 70 0.18072037145060008 0.2617744847181645 0.5737992763703951 1.261638455555825 0.691105669926377 1.538114979348677
160 158 data\1_SP-13.csv 80 0.17867732178011012 0.1735062337331057 0.20455691893679187 0.40809888582969184 0.698209101804319 1.4847208692700917
161 159 data\1_SP-13.csv 90 0.19491393115805777 0.12209966495242676 0.10135028752760396 0.4554548974773021 0.6823303798309936 1.457893307596379
162 160 data\1_SP-17.csv 20 18.507066346497727 18.605257986168017 18.699978439884738 8.520723473217428 9.226100175280822 27.98292250374635
163 161 data\1_SP-17.csv 30 5.320558014435307 4.776189146250437 16.926096406129528 31.302259975691005 4.6214332180141895 6.7712262129747955
164 162 data\1_SP-17.csv 40 1.7586801283380498 4.547990441524903 5.21303935131053 3.797922268658988 4.561169272178184 2.087240103886984
165 163 data\1_SP-17.csv 50 2.7919874072221913 3.499394713176624 3.424666858660793 3.6674731091011044 3.661841220811493 4.753699240913875
166 164 data\1_SP-17.csv 60 4.509512187046268 5.062010812243616 4.965508498242809 6.293231675366611 5.19153025332887 6.083450351519332
167 165 data\1_SP-17.csv 70 4.477434583027644 4.415713384649314 2.973290496836599 2.715851907697277 4.835842604836214 4.835569684490849
168 166 data\1_SP-17.csv 80 4.118355090968156 3.5969326524892806 1.60282498572747 1.6372084145126302 4.409162438716603 3.485338713566364
169 167 data\1_SP-17.csv 90 3.5226698829318543 2.7625898354405023 0.6674499662480333 0.9570607962268323 3.912308283959222 2.436228051133355
170 168 data\1_SP-18.csv 20 7.606253940268715 15.613827267689272 16.31429809958159 21.055177174811675 16.01873246119757 18.570240961687887
171 169 data\1_SP-18.csv 30 14.367568344429996 18.4759301869696 17.811077331371575 21.26918604052492 18.839682917325284 29.252580611697567
172 170 data\1_SP-18.csv 40 15.142173533690988 15.260101482485425 12.895880292773695 12.11525582622308 16.025220403227284 28.06859674552618
173 171 data\1_SP-18.csv 50 13.236830193943605 11.361940339119686 9.147532937341081 10.380721972228644 12.690863720611114 21.247994508968986
174 172 data\1_SP-18.csv 60 12.572109779868718 10.373045747898717 7.8403567771617455 7.475192965834482 12.053241768288808 17.242566043994316
175 173 data\1_SP-18.csv 70 11.391355252271676 8.991883569123548 5.798034930135011 5.204559449064496 10.965688729889084 14.234577645108516
176 174 data\1_SP-18.csv 80 8.7658521973087 6.517142595190262 3.02552883906568 3.1276197810755373 8.87611960090738 9.652567006884965
177 175 data\1_SP-18.csv 90 6.381586755011683 4.6267059923998515 1.47963200729406 2.0247272214014176 7.174463796974973 6.1492139826732455
178 176 data\1_SP-2.csv 20 7.251670001515235 4.035528221519683 1.768940800539829 6.821820576668616 2.489462690852944 12.351549624588728
179 177 data\1_SP-2.csv 30 6.394859481503299 3.334644752337675 1.892465100473458 6.494840643140869 2.1072941692190876 10.96773880812998
180 178 data\1_SP-2.csv 40 3.5150979054006277 1.030476235045081 0.5815497265283422 1.663475036364787 0.6352824649243111 6.831454185237476
181 179 data\1_SP-2.csv 50 2.162925795561472 0.7487742235720621 0.60621821951639 2.265307447579157 0.5469280850738427 4.812094374889455
182 180 data\1_SP-2.csv 60 1.5530356583388822 0.9400941478766079 0.9361513856359182 1.7749434198125569 0.7003402990927681 3.583445335172854
183 181 data\1_SP-2.csv 70 1.92956285477023 1.4854573892940488 1.542384094436538 2.159691403245862 1.191125682131134 3.256134742153506
184 182 data\1_SP-2.csv 80 1.7620101358819777 1.2590310165580139 0.6813073644257572 0.8336330267520252 1.015359141094122 2.6737570408162696
185 183 data\1_SP-2.csv 90 1.6752219272312727 1.1350087827397781 0.34980187958582465 0.6806276375598923 0.9247523614210207 2.359606626511095
186 184 data\1_SP-21.csv 20 42.12676455859104 38.90120020317653 37.22658345622938 34.309623185121495 41.718088947091374 74.12512857571585
187 185 data\1_SP-21.csv 30 33.64631516446726 25.29658461536414 18.696713585251256 15.38596010345607 30.561471155274536 53.322700065494814
188 186 data\1_SP-21.csv 40 20.49815346851365 13.283944333261775 8.03669888027985 4.568010914517468 20.510334180313954 29.75748908953392
189 187 data\1_SP-21.csv 50 16.49123687721858 10.449087808602119 5.519203486691371 1.9678403995436788 18.01891988306453 23.193971027143334
190 188 data\1_SP-21.csv 60 11.147105244244372 7.122962434632913 3.175364825607084 0.9753825221211637 14.617090212485024 15.185938487017665
191 189 data\1_SP-21.csv 70 7.597835933362693 5.075843395024002 1.996714419444735 0.41583681120581284 12.169507338053933 10.092257320529143
192 190 data\1_SP-21.csv 80 5.3839849473707835 3.963110348842146 1.7666792308581958 0.5075445221631049 10.439725199383387 6.52569514597667
193 191 data\1_SP-21.csv 90 4.047770694365581 3.216550040119223 1.2847238278822437 0.280779464110913 9.48544972279011 4.250756998837119
194 192 data\1_SP-23.csv 20 13.116024974500316 11.406415919730044 3.765506247399486 602.2836630636259 12.191707590091927 23.923046775405396
195 193 data\1_SP-23.csv 30 1.4112953886998152 0.8966962615790152 0.586859483898776 4.264442175046207 1.3311405338931415 2.678895051458994
196 194 data\1_SP-23.csv 40 0.503194490519577 1.246997021327698 1.893518739512354 3.8553845049761346 1.011465585089704 0.843393031303151
197 195 data\1_SP-23.csv 50 0.40177904473664083 1.3013884145405648 1.5432161449557766 1.6336735889893956 0.8320807816723674 0.46226549015170804
198 196 data\1_SP-23.csv 60 0.5378967117637476 0.983665873885793 0.9012969813708892 1.0010073396356354 0.8278345528564164 0.04731529797567191
199 197 data\1_SP-23.csv 70 0.4535655885338811 0.491565848929026 0.506019286829261 2.8099125224415813 1.1146050245412609 0.38557444858889767
200 198 data\1_SP-23.csv 80 0.5866926857702145 0.6017709913879816 0.9737862441170824 2.2594119811584648 1.460892813154599 0.7532984311519613
201 199 data\1_SP-23.csv 90 0.7117527371636706 0.6781729753686052 0.7357350650681013 0.6003291518938575 1.4891135231245114 0.5780290711276734
202 200 data\1_SP-24.csv 20 8.05208321507387 2.3775483088799723 0.8284886593422096 8.808339547201996 1.8054682221258365 12.256708834049562
203 201 data\1_SP-24.csv 30 4.754057585152563 1.8972328533869973 1.14346382775907 5.869420242870603 1.8346948063531192 6.763333674883654
204 202 data\1_SP-24.csv 40 3.7044220656872535 1.7774295583659288 1.600770661101458 5.438070310197358 1.487388512391807 5.0416487683838795
205 203 data\1_SP-24.csv 50 3.3814507465626766 2.2423339061827465 2.3743431468449008 5.156771184685447 0.7935985345444764 4.3162075572721506
206 204 data\1_SP-24.csv 60 2.9580616982955585 2.1138244336006364 1.936738251439519 3.911737118094992 0.7008325198972941 3.4983607937343777
207 205 data\1_SP-24.csv 70 2.053019642075373 1.3755461864353626 0.8259635802348708 1.9783233512007146 0.8315397306624637 2.133727284788961
208 206 data\1_SP-24.csv 80 0.925154070288001 0.4176762471904959 0.6829290262047738 0.48168303571445314 1.212222131618538 0.88306789224265
209 207 data\1_SP-24.csv 90 0.2631479686071642 0.2788168836221197 0.7768479019140757 0.669556803256403 1.498288156663679 0.4404124785364729
210 208 data\1_SP-27.csv 20 18.010609556858284 14.166985114707632 9.915165891602133 23.194832884944326 3.656394863473691 24.791256870866732
211 209 data\1_SP-27.csv 30 11.71354908610107 7.814156489676422 4.0848401856637375 13.855485533288206 2.9853163240886675 15.052317647589291
212 210 data\1_SP-27.csv 40 6.586066767787878 2.817013389041188 2.1778926038820683 5.688088848545767 4.590422827040999 7.541163703392897
213 211 data\1_SP-27.csv 50 3.3522604033921652 0.9786737289806023 3.494819318845624 2.6240804510051956 5.782538636584345 3.1411422304844905
214 212 data\1_SP-27.csv 60 1.3335052593426149 1.6158617009779779 2.930979658391043 1.965224999359457 6.167856737452781 0.5672384340131202
215 213 data\1_SP-27.csv 70 0.7395930072864558 1.742199982469519 2.0915616244173845 1.3781521788721838 6.043388875004583 0.35371090404748884
216 214 data\1_SP-27.csv 80 0.7129711553289985 1.9765310226371968 2.013838329825629 0.47991145803682334 6.111852384127282 0.8382121211179765
217 215 data\1_SP-27.csv 90 0.9512041354104962 1.8979783064509756 1.472466016784874 0.401096122731131 5.927546475798311 0.7494462753147673
218 216 data\1_SP-29.csv 20 58.11456968859943 54.20867884329497 39.61108050965662 72.7878344325526 47.176567041237234 79.76634044962634
219 217 data\1_SP-29.csv 30 42.261288398671475 37.208725595653966 19.481691221334845 55.65442483030424 33.51072091517887 59.396079737633926
220 218 data\1_SP-29.csv 40 30.26589551904199 25.41935167585668 8.824791212366963 39.27528850191659 24.03930285852246 43.74033540249678
221 219 data\1_SP-29.csv 50 22.045627271044555 17.410788234879284 3.834321033138491 28.384109882092144 17.082361204181726 32.80560900650579
222 220 data\1_SP-29.csv 60 12.58725003675586 8.625710340309544 0.7735301121039388 21.141175191142423 8.736739005847276 18.931538500183166
223 221 data\1_SP-29.csv 70 10.379782274387619 6.498289228635464 0.23684084569137315 17.61674109226546 6.623364989079403 14.046110736188723
224 222 data\1_SP-29.csv 80 9.388483891991743 5.731592744259239 0.2173229832348911 13.96446983079995 5.867370452446342 11.728430114724574
225 223 data\1_SP-29.csv 90 8.083201483420313 4.860118636658717 0.2637172037503133 11.355207422945249 4.998247642890794 9.505128470303845
226 224 data\1_SP-3.csv 20 2.7639666377013827 0.9505339793546425 1.0222593461911647 2.1271474494439353 1.889746668823346 5.625462848877987
227 225 data\1_SP-3.csv 30 1.7588046260832937 1.0346779977857292 0.6904824924392874 1.2190904976454986 1.0911784639097006 4.030450955314791
228 226 data\1_SP-3.csv 40 1.0122462164703974 0.3562513894553611 0.6380821442756859 0.9133417471727429 1.3412176434826666 2.873269221386522
229 227 data\1_SP-3.csv 50 0.875772435310304 0.597764287699386 0.5855513269386318 1.3473701648152487 0.8205124440118188 2.525210296311343
230 228 data\1_SP-3.csv 60 0.624543539369494 0.3742951816014111 0.2809099872726779 0.9231072880468726 0.9030900318430175 1.952983904963503
231 229 data\1_SP-3.csv 70 0.8332515554331394 0.6103887926575137 0.6178974084951281 1.11269087059214 0.7356865313899721 1.9233485531789825
232 230 data\1_SP-3.csv 80 0.9419012904046294 0.6892736180113511 0.5956241281720231 0.869350077634995 0.691929755323423 1.7907405530904157
233 231 data\1_SP-3.csv 90 1.0498331495160493 0.7424376198659032 0.522772797378362 0.6773245400829682 0.6197977029042671 1.6192326419223946
234 232 data\1_SP-31.csv 20 19.33714932197116 14.109524841969442 8.55126975160453 16.3240970149211 7.796826333425127 29.016294421755674
235 233 data\1_SP-31.csv 30 14.93768169180386 11.575579244717796 11.27046813038168 14.889609790138776 7.408257853548278 20.689607566333564
236 234 data\1_SP-31.csv 40 7.225161923150376 3.1546066039808682 10.586590635842512 7.222394920036293 3.5712235463176905 7.176477334351773
237 235 data\1_SP-31.csv 50 2.057140529710824 11.165257759960324 16.466760388295498 11.063404181253127 11.111250850191475 3.980293867555588
238 236 data\1_SP-31.csv 60 3.129236548164459 9.471968574955419 8.654601282011694 5.753283664275471 9.626092065807585 5.815114167759361
239 237 data\1_SP-31.csv 70 3.493324425986982 6.647691615846848 4.423725798205054 3.1139471987914424 7.358201799611277 5.618117386075426
240 238 data\1_SP-31.csv 80 3.7614567295505226 5.439641426488154 3.4017208594955126 3.3922462564020117 6.468800659704724 5.137075517588528
241 239 data\1_SP-31.csv 90 3.6850586112356307 4.403414502163275 2.464704301411955 2.1002848993271788 5.7198909032835195 4.1671588382944265
242 240 data\1_SP-4.csv 20 14.1800105801406 3.1497257010769313 6.116492058476434 2.3716109308472393 2.9888371479513616 18.033498964791022
243 241 data\1_SP-4.csv 30 8.814180972034736 2.3841507421739756 3.4281001378778577 1.0193269965751968 2.421031029465271 10.14433645479312
244 242 data\1_SP-4.csv 40 4.020069458092881 4.266027202872742 5.052898274886464 6.595912285842589 4.856902549700719 2.9447648482440627
245 243 data\1_SP-4.csv 50 1.5655809586933982 4.421824166333213 4.498503991265344 3.6168109381332747 4.737919350452426 2.0241453132273364
246 244 data\1_SP-4.csv 60 2.8255889328529777 4.318780481087872 3.812224438799903 3.638592480485815 4.348949039715682 4.9441194385123595
247 245 data\1_SP-4.csv 70 3.0098355177291696 3.5706976401314443 2.0422680463516194 1.8948403042494955 3.665877481781085 3.8922112538999727
248 246 data\1_SP-4.csv 80 3.3383481132125388 3.533116526395827 1.6461241498695636 1.7187934268197498 3.8936071711885947 3.0551044132898255
249 247 data\1_SP-4.csv 90 3.500274980525205 3.4634537756934947 1.3053983171550954 1.0905947127296258 4.12898100426122 2.4002749805252392
250 248 data\1_SP-5.csv 20 19.01982206124973 18.231684083564126 17.2031688944356 22.856744017504607 6.552090153390118 29.24820828829735
251 249 data\1_SP-5.csv 30 8.619850907506631 1.8732529579056163 3.8839833263646395 6.122867503531058 1.9684593608640961 12.881057035896788
252 250 data\1_SP-5.csv 40 4.373489591201087 2.4254200148711518 5.582645142047572 5.99503921049501 3.5165520880592576 6.185413783319461
253 251 data\1_SP-5.csv 50 0.7840007911603155 3.1212360913344726 3.341409408531209 3.3018738611819773 4.031962434343803 0.27035601893521743
254 252 data\1_SP-5.csv 60 1.385233520758738 2.9946337522798414 2.4356737478699 2.51980850430202 4.095636621635693 1.5725633701757147
255 253 data\1_SP-5.csv 70 1.3376003278793556 2.155169165017391 0.8191776089203991 1.217087121208194 3.848020332177294 1.014221305019987
256 254 data\1_SP-5.csv 80 1.5794214196008316 2.145853516105067 0.9055601727131877 1.6616812187056658 4.1534635206323545 0.8370904136937725
257 255 data\1_SP-5.csv 90 1.6476033879915875 1.9262754528654276 0.6184697506069872 0.9602577234857359 4.3428653785188365 0.5191583472790171
258 256 data\1_SP-6.csv 20 18.823368133620573 9.711298695408024 4.671217951931806 18.89361772643047 5.532272743878993 24.49568538525625
259 257 data\1_SP-6.csv 30 7.2850741787827795 3.40676523188954 7.403579031219248 13.020198301363921 4.910197270345021 5.4312582371888425
260 258 data\1_SP-6.csv 40 4.150725891586423 3.779152594657274 4.632370831812934 2.932826525485085 5.162388657496632 0.45840271174347436
261 259 data\1_SP-6.csv 50 3.590739524819434 5.876445324519404 6.4793926042065815 6.519352298532605 6.766107158344899 8.441776378973657
262 260 data\1_SP-6.csv 60 5.257258756772454 6.6405512761123 6.127938350147389 7.02026603377924 7.704340475747744 9.532189678105453
263 261 data\1_SP-6.csv 70 6.499622877299118 7.338520754512718 6.13253420808361 6.2149369211993335 8.734147830763076 9.192764904676551
264 262 data\1_SP-6.csv 80 7.197584388519787 7.16748519483013 4.84690165747437 4.571515896385614 9.240389511522254 7.989072293220033
265 263 data\1_SP-6.csv 90 7.258476142471198 6.391707237133926 3.199691472382279 2.5189317643384292 9.378416986074912 6.36436546810836
266 264 data\1_SP-8.csv 20 13.724402266628424 3.8474261858726027 3.8761389145379472 4.297387192543221 2.979953000441522 28.727756112879206
267 265 data\1_SP-8.csv 30 8.117162803997703 1.8192082930013656 3.1881100613455 10.859572755132064 3.763598263372951 17.496525503906014
268 266 data\1_SP-8.csv 40 5.601929975825574 3.1750076497104125 3.908802713266494 4.600704081525033 4.351429810828936 12.288857095097796
269 267 data\1_SP-8.csv 50 5.418106443167945 4.1632861639884515 5.009236061811986 6.812329827763838 4.8346123593513175 11.576585817379168
270 268 data\1_SP-8.csv 60 4.541530280936754 3.5537333439080747 3.1217704199084597 4.588534853343822 4.8770768338388235 8.296402009884787
271 269 data\1_SP-8.csv 70 5.02028811636518 3.9026228580560693 3.2060451766201425 3.7664338358837894 5.709616335803563 7.307266716541278
272 270 data\1_SP-8.csv 80 5.435344889150946 3.916965279400222 2.7451449694245005 3.2045994621080216 6.627286940187872 6.2159908585936705
273 271 data\1_SP-8.csv 90 5.48054191461318 3.437963134670824 1.7657518311792497 1.7600499561277778 7.513525270362268 4.889949188131595

273
error_overall.csv Normal file
View File

@ -0,0 +1,273 @@
,File,Data_usage,RMSE_hyper_original,RMSE_hyper_nonlinear,Final_error_hyper_original,Final_error_hyper_nonlinear
0,data\1_S-1.csv,20,23.478646116979654,16.776209296837532,31.147089838760067,16.776209296837532
1,data\1_S-1.csv,30,12.402243644854485,5.208861608476322,13.42602435195194,5.208861608476322
2,data\1_S-1.csv,40,5.5477225601078475,2.4340047901478026,3.137413028656972,2.4340047901478026
3,data\1_S-1.csv,50,1.4243573608600337,5.339485942822988,1.5491904788507092,5.339485942822988
4,data\1_S-1.csv,60,1.2405425139403812,5.484226338578135,2.4292610036214497,5.484226338578135
5,data\1_S-1.csv,70,1.597066962397822,4.027720666840552,1.0042867085237617,4.027720666840552
6,data\1_S-1.csv,80,1.5539368201809547,3.3570950843708673,0.3671659497912856,3.3570950843708673
7,data\1_S-1.csv,90,1.1605550014743073,2.5042477994964543,0.3815598208090165,2.5042477994964543
8,data\1_S-10.csv,20,2.250454268092718,11.945795822232032,5.458857525298658,12.78210944667846
9,data\1_S-10.csv,30,1.4798556806649208,4.5201471879813395,5.56697174346722,6.187128156863005
10,data\1_S-10.csv,40,2.5831593209425114,1.5068804246967553,7.327682225114709,1.2159945876728537
11,data\1_S-10.csv,50,3.0493487660606946,2.5290835903126405,6.543763194275195,0.7580449556824689
12,data\1_S-10.csv,60,2.753018935138921,2.4773563031889623,5.197657553387721,1.1114680943428539
13,data\1_S-10.csv,70,2.057161629717554,1.852262568800247,3.5981758084098927,0.7917721159345887
14,data\1_S-10.csv,80,1.385275833572099,1.222635822549523,3.0372816823669457,0.28624544571854166
15,data\1_S-10.csv,90,1.2289805279797732,1.1001404713990144,2.659062579968389,0.22576196364864093
16,data\1_S-11.csv,20,12.780165484446645,3.543442987743452,14.142903035702759,2.8057093191787796
17,data\1_S-11.csv,30,8.950467372059691,1.8083726479927158,10.92937956217384,1.2372043888069384
18,data\1_S-11.csv,40,6.0781469397310275,2.0814044264045988,8.545036423072245,1.6105013874823666
19,data\1_S-11.csv,50,4.354144249638527,1.830001873935883,6.658170772673151,1.4688426083053616
20,data\1_S-11.csv,60,3.0600926275659055,1.5911267267597402,5.316149584849218,1.336850488399163
21,data\1_S-11.csv,70,2.0782232665915683,1.023377922742072,3.7693273765738313,0.8323985798147107
22,data\1_S-11.csv,80,1.3106083121407994,0.46948359525194167,3.2221638079518704,0.29468631398794154
23,data\1_S-11.csv,90,1.1328843800677029,0.4200675824984277,2.8519660229689157,0.2547636891884459
24,data\1_S-12.csv,20,2.7120407627429746,7.298582927104371,13.542896407505745,2.6778432237681407
25,data\1_S-12.csv,30,5.402183151249969,7.687632014330983,12.39344963386265,3.7415741342788835
26,data\1_S-12.csv,40,4.394685384926156,4.845951876514215,6.954026249999055,2.412851448737444
27,data\1_S-12.csv,50,3.2605713395995304,3.1319161474217667,4.935018097624205,1.4510820822297386
28,data\1_S-12.csv,60,1.9783184512590368,1.569473731965631,2.850940115587415,0.5703161045481381
29,data\1_S-12.csv,70,1.0000004382811707,0.5560357418512717,2.1698581422986623,0.38681115435021735
30,data\1_S-12.csv,80,0.8241746816026769,0.45382185232957534,1.8254973815355815,0.3919724859787349
31,data\1_S-12.csv,90,0.7085626123177089,0.417602660005857,1.4335822794754267,0.32528847438603103
32,data\1_S-15.csv,20,0.2880082260432656,0.31324495710969785,0.4022129400876201,0.31324495710969785
33,data\1_S-15.csv,30,0.2612327425554409,0.1982982487483713,0.15485897379953692,0.1982982487483713
34,data\1_S-15.csv,40,0.1627146650925451,0.0847291405415234,0.038989961050724664,0.0847291405415234
35,data\1_S-15.csv,50,0.09403647123965381,0.03947355449793594,0.016236014905314802,0.03947355449793594
36,data\1_S-15.csv,60,0.05952893520483399,0.023106062873209498,0.005718866196795912,0.023106062873209498
37,data\1_S-15.csv,70,0.04473399276446019,0.016377408145597953,0.0022423032047758674,0.016377408145597953
38,data\1_S-15.csv,80,0.033746284419315604,0.014448091335809161,0.007188935630891185,0.014448091335809161
39,data\1_S-15.csv,90,0.02766081220100747,0.013596987999911315,0.006864032090390862,0.013596987999911315
40,data\1_S-16.csv,20,3.3040962181845503,2.5459436259747408,3.3531886022017394,2.5459436259747408
41,data\1_S-16.csv,30,3.397577659982119,2.1593623899054246,6.806972770490538,2.1593623899054246
42,data\1_S-16.csv,40,3.5615235188381624,3.0031596961493916,6.7713581454297,3.0031596961493916
43,data\1_S-16.csv,50,2.979305758737618,2.456347223799883,4.62235381428586,2.456347223799883
44,data\1_S-16.csv,60,2.440684687417658,1.9674064134436176,3.7587013753882332,1.9674064134436176
45,data\1_S-16.csv,70,1.9611474785668164,1.5509606603565687,2.4317880070651103,1.5509606603565687
46,data\1_S-16.csv,80,1.147210901886969,0.7794500638783542,1.0220331261428133,0.7794500638783542
47,data\1_S-16.csv,90,0.6658320594808093,0.3599471149325066,1.153154586718134,0.3599471149325066
48,data\1_S-17.csv,20,14.817149675077845,11.00820026665355,19.49554522452195,11.00820026665355
49,data\1_S-17.csv,30,12.619854078927927,9.134481442421977,16.03629997348982,9.134481442421977
50,data\1_S-17.csv,40,9.602067756400896,6.47474795338568,11.477366749731411,6.47474795338568
51,data\1_S-17.csv,50,6.782687807338599,3.914529880205498,6.842442053294446,3.914529880205498
52,data\1_S-17.csv,60,4.4393395624054275,2.0008384382997764,4.276987675473648,2.0008384382997764
53,data\1_S-17.csv,70,2.931857444605733,1.0695640076905621,3.2225789084675727,1.0695640076905621
54,data\1_S-17.csv,80,1.630643658296253,0.3125213348966345,1.8326739324209824,0.3125213348966345
55,data\1_S-17.csv,90,0.9032383117232653,0.24827782525448813,1.674370356936783,0.24827782525448813
56,data\1_S-18.csv,20,4.8569683354725655,8.370185056504068,14.865095422926293,8.370185056504068
57,data\1_S-18.csv,30,7.502879610626537,9.170910252757494,13.6454883261436,9.170910252757494
58,data\1_S-18.csv,40,7.138752761075896,7.328752844478417,9.095760769015405,7.328752844478417
59,data\1_S-18.csv,50,5.233986629512829,4.185885403593828,3.6322332834046427,4.185885403593828
60,data\1_S-18.csv,60,3.67241324585774,2.169070128892058,2.154039188017579,2.169070128892058
61,data\1_S-18.csv,70,2.5424291135664294,1.1802477097783282,2.064256197436636,1.1802477097783282
62,data\1_S-18.csv,80,2.316459386629839,1.1667965600421817,1.7712363628695194,1.1667965600421817
63,data\1_S-18.csv,90,2.2309174292325835,1.2202603294310326,1.215885316632567,1.2202603294310326
64,data\1_S-19.csv,20,0.4813921356094701,0.38645090597916665,,0.38645090597916665
65,data\1_S-19.csv,30,0.2542390778983757,0.4486975357849197,1.4578288563061808,0.4486975357849197
66,data\1_S-19.csv,40,0.31581380528892206,0.3508458151659684,0.38722202897310515,0.3508458151659684
67,data\1_S-19.csv,50,0.4289141972590556,0.47865360212276115,0.17735833501852744,0.47865360212276115
68,data\1_S-19.csv,60,0.6124097428850761,0.6727217066022969,0.5650083536577103,0.6727217066022969
69,data\1_S-19.csv,70,0.5623432486393993,0.5988132191913642,0.3048821664614563,0.5988132191913642
70,data\1_S-19.csv,80,0.4580512395915517,0.5006204677271572,0.22446438982174222,0.5006204677271572
71,data\1_S-19.csv,90,0.3623750170500113,0.42372832622671464,0.18242844832152194,0.42372832622671464
72,data\1_S-2.csv,20,29.13824269821142,32.97006600177633,50.98953962583674,32.97006600177633
73,data\1_S-2.csv,30,29.094378311540368,26.78893971941293,45.95952965698194,26.78893971941293
74,data\1_S-2.csv,40,25.668812328945442,19.737664954989953,24.389044284038413,19.737664954989953
75,data\1_S-2.csv,50,21.583732110692612,13.578484970142826,12.336281678713968,13.578484970142826
76,data\1_S-2.csv,60,16.62078573542056,8.641182434779754,6.562214890034458,8.641182434779754
77,data\1_S-2.csv,70,10.811437650017501,4.671426204672148,3.462313585656565,4.671426204672148
78,data\1_S-2.csv,80,9.173065296379605,3.754546671085857,2.5270190520652127,3.754546671085857
79,data\1_S-2.csv,90,7.478016107420814,3.0808772341682698,2.4566348296251874,3.0808772341682698
80,data\1_S-20.csv,20,1.5991320251442396,0.734274177067469,,0.734274177067469
81,data\1_S-20.csv,30,0.983467706082507,0.5566263918424004,0.6891888364909496,0.5566263918424004
82,data\1_S-20.csv,40,1.0445947683198489,1.8102553204615202,3.0507083248841558,1.8102553204615202
83,data\1_S-20.csv,50,1.0135995303584442,1.2428489549759612,1.3546541436513129,1.2428489549759612
84,data\1_S-20.csv,60,0.9359575571420113,0.9239063949715502,0.9803172858616156,0.9239063949715502
85,data\1_S-20.csv,70,1.0160045814445942,0.9713676236655032,0.9647285147730768,0.9713676236655032
86,data\1_S-20.csv,80,0.9330057968496768,0.8398552977157308,0.8579451894453256,0.8398552977157308
87,data\1_S-20.csv,90,0.7810454819952506,0.6916580785283166,0.5899582590956429,0.6916580785283166
88,data\1_S-3.csv,20,31.079801282684922,20.79725899625463,28.308551362298864,20.79725899625463
89,data\1_S-3.csv,30,15.753554144633085,2.6352848578842987,4.702100098681567,2.6352848578842987
90,data\1_S-3.csv,40,6.0485793575074664,7.374862524981409,5.6935020904941345,7.374862524981409
91,data\1_S-3.csv,50,2.094048920603935,8.202986587700892,6.144855383897656,8.202986587700892
92,data\1_S-3.csv,60,1.4543199299679703,7.237301240068834,5.584626897838916,7.237301240068834
93,data\1_S-3.csv,70,2.19394289660755,5.393455869919254,3.771152629539646,5.393455869919254
94,data\1_S-3.csv,80,2.4322158153771154,4.8844137991230685,2.6133509468069507,4.8844137991230685
95,data\1_S-3.csv,90,2.734140059942362,4.359378633827035,2.404017139031467,4.359378633827035
96,data\1_S-4.csv,20,28.378259539192584,20.76394535575388,33.956392919022214,20.76394535575388
97,data\1_S-4.csv,30,16.61106216131759,8.942811079170239,18.710539650936383,8.942811079170239
98,data\1_S-4.csv,40,9.797519852171225,2.5496599587282107,8.412714329822519,2.5496599587282107
99,data\1_S-4.csv,50,6.125834599642608,2.6040335337737477,1.9179721973123014,2.6040335337737477
100,data\1_S-4.csv,60,2.8788592236974906,4.206983125971776,1.7072180407065176,4.206983125971776
101,data\1_S-4.csv,70,0.4085160425472198,4.062087348253181,1.6008828051224104,4.062087348253181
102,data\1_S-4.csv,80,0.47595142031207355,3.724576037953115,0.5935342876852995,3.724576037953115
103,data\1_S-4.csv,90,0.4702196369976548,2.770238687192787,0.09388708245413113,2.770238687192787
104,data\1_S-5.csv,20,1.967727423890477,1.3254354393668206,1.9607824925465678,1.3254354393668206
105,data\1_S-5.csv,30,1.4382082353192773,1.919434236053275,2.023289939059952,1.919434236053275
106,data\1_S-5.csv,40,2.7465167206481573,4.409602595386762,5.725165924900896,4.409602595386762
107,data\1_S-5.csv,50,3.461920761656759,4.381575529957983,5.075875198611303,4.381575529957983
108,data\1_S-5.csv,60,4.361846022920693,4.604849959229172,4.208858373774062,4.604849959229172
109,data\1_S-5.csv,70,4.3969327856562845,4.205632373475578,3.2719092143242556,4.205632373475578
110,data\1_S-5.csv,80,4.096266723294103,3.499985586090912,2.1966796537602513,3.499985586090912
111,data\1_S-5.csv,90,3.4604082851893114,2.689997383766356,1.2253835699076183,2.689997383766356
112,data\1_S-6.csv,20,3.053759492348517,2.001309307753893,4.399864757510363,2.001309307753893
113,data\1_S-6.csv,30,0.6616315454047025,2.8758400900404943,2.3907096778655346,2.8758400900404943
114,data\1_S-6.csv,40,1.8154121853645282,3.2214327224410306,2.5461929166560875,3.2214327224410306
115,data\1_S-6.csv,50,1.296886856905884,1.4915193295518268,0.639996196106986,1.4915193295518268
116,data\1_S-6.csv,60,0.8015748472732784,0.696411033119271,0.5934316617703056,0.696411033119271
117,data\1_S-6.csv,70,0.7876144436121876,0.6730390296235668,0.1265165575151855,0.6730390296235668
118,data\1_S-6.csv,80,0.8779263334065708,0.7750307740182709,0.4493235452909501,0.7750307740182709
119,data\1_S-6.csv,90,0.7501681896633152,0.6416649676648516,0.12849860415305325,0.6416649676648516
120,data\1_S-7.csv,20,5.365254081514151,3.8657561591156813,6.2385985725116875,3.8657561591156813
121,data\1_S-7.csv,30,6.020986058758559,6.135746944313514,7.534740868368928,6.135746944313514
122,data\1_S-7.csv,40,5.674619852269969,4.703357957475107,5.468678771443814,4.703357957475107
123,data\1_S-7.csv,50,3.4690575924798996,1.8878183084882048,1.6025113529316266,1.8878183084882048
124,data\1_S-7.csv,60,2.7451423754747624,1.4731986021963825,1.2925956551006061,1.4731986021963825
125,data\1_S-7.csv,70,2.7072833040182207,1.5925145664383469,1.5625936995519176,1.5925145664383469
126,data\1_S-7.csv,80,2.621881865553797,1.7290734621115118,1.721165557371262,1.7290734621115118
127,data\1_S-7.csv,90,2.266894911924734,1.4570027185864196,1.0957970213384967,1.4570027185864196
128,data\1_S-8.csv,20,18.11867407113544,14.215247739318466,22.404300227967695,13.446664866431115
129,data\1_S-8.csv,30,14.514699952893631,11.335799950369877,17.58355261139789,10.86796392608233
130,data\1_S-8.csv,40,11.075185948305768,6.8509390887115895,9.530043636696428,6.673867126195534
131,data\1_S-8.csv,50,7.186567380657684,2.8339403044579425,3.85833262551545,2.7885364868377245
132,data\1_S-8.csv,60,4.170061258682651,0.9040062070909864,1.1686720201047711,0.9105324134896468
133,data\1_S-8.csv,70,1.5780417387192855,1.4050145672359917,0.35952798393250346,1.4178734518905698
134,data\1_S-8.csv,80,0.5058499106073733,1.6205084705479829,0.4184494053158285,1.6366433460233913
135,data\1_S-8.csv,90,0.4578779578295943,1.6313760499123662,0.2256783271406,1.6521997346239476
136,data\1_S-9.csv,20,23.23466856539556,14.38965667065365,11.415193360584711,17.60095766072406
137,data\1_S-9.csv,30,8.740016212536279,1.254088481183067,6.8867355672344175,4.699099274275911
138,data\1_S-9.csv,40,0.7725497801920852,4.342346270472876,8.128363400745855,0.8423842661623222
139,data\1_S-9.csv,50,1.604201044849245,4.046644394358106,6.002530432463326,0.828713418284349
140,data\1_S-9.csv,60,1.3390917223895678,2.428693627890554,3.816309142062488,1.0597756937496738
141,data\1_S-9.csv,70,1.2202180455836111,1.9103128992797382,3.0048787355486817,1.310797523750748
142,data\1_S-9.csv,80,0.5617299433168577,0.9928155840050683,1.4040243056990842,1.8418478186652112
143,data\1_S-9.csv,90,0.22486696052940594,0.5792833717765682,1.3539869222261414,2.1243071866986516
144,data\1_SP-11.csv,20,1.7081991927226081,7.2313561231667896,6.18712689484869,3.5433619581079885
145,data\1_SP-11.csv,30,1.5756064331383481,1.4508379762295698,10.672594578553554,1.617156571881448
146,data\1_SP-11.csv,40,1.666416631660893,1.9147387544365118,3.5102269392885606,2.0539228359031503
147,data\1_SP-11.csv,50,2.292818865830556,3.0276355451630215,5.7946017504485265,3.032368564205978
148,data\1_SP-11.csv,60,1.889989812312286,1.7249795942495172,2.526077644495358,2.0433210528715673
149,data\1_SP-11.csv,70,2.103608751730582,1.8058365765796776,1.9073165276319612,2.238909008345376
150,data\1_SP-11.csv,80,1.8788628904767846,1.162865729788941,1.1848375699933602,2.0019114454225315
151,data\1_SP-11.csv,90,1.6578045150943486,0.8013356838663631,0.3893484790967483,1.835912955550954
152,data\1_SP-13.csv,20,0.4372325497058458,3.6243420678089686,7.415206093573297,0.6251074747335184
153,data\1_SP-13.csv,30,0.7131156843560439,1.182411372082287,2.1000835574758305,0.49852265726353917
154,data\1_SP-13.csv,40,0.4278189077600768,0.39601474936665476,2.735854312131982,0.8957677532161553
155,data\1_SP-13.csv,50,1.4339059010061033,1.9491290609659973,2.656249815428144,0.7047311863777824
156,data\1_SP-13.csv,60,0.39242710983822804,0.15258643592231405,1.3278099872124942,0.5322267611739026
157,data\1_SP-13.csv,70,0.18072037145060008,0.2617744847181645,1.261638455555825,0.691105669926377
158,data\1_SP-13.csv,80,0.17867732178011012,0.1735062337331057,0.40809888582969184,0.698209101804319
159,data\1_SP-13.csv,90,0.19491393115805777,0.12209966495242676,0.4554548974773021,0.6823303798309936
160,data\1_SP-17.csv,20,18.507066346497727,18.605257986168017,8.520723473217428,9.226100175280822
161,data\1_SP-17.csv,30,5.320558014435307,4.776189146250437,31.302259975691005,4.6214332180141895
162,data\1_SP-17.csv,40,1.7586801283380498,4.547990441524903,3.797922268658988,4.561169272178184
163,data\1_SP-17.csv,50,2.7919874072221913,3.499394713176624,3.6674731091011044,3.661841220811493
164,data\1_SP-17.csv,60,4.509512187046268,5.062010812243616,6.293231675366611,5.19153025332887
165,data\1_SP-17.csv,70,4.477434583027644,4.415713384649314,2.715851907697277,4.835842604836214
166,data\1_SP-17.csv,80,4.118355090968156,3.5969326524892806,1.6372084145126302,4.409162438716603
167,data\1_SP-17.csv,90,3.5226698829318543,2.7625898354405023,0.9570607962268323,3.912308283959222
168,data\1_SP-18.csv,20,7.606253940268715,15.613827267689272,21.055177174811675,16.01873246119757
169,data\1_SP-18.csv,30,14.367568344429996,18.4759301869696,21.26918604052492,18.839682917325284
170,data\1_SP-18.csv,40,15.142173533690988,15.260101482485425,12.11525582622308,16.025220403227284
171,data\1_SP-18.csv,50,13.236830193943605,11.361940339119686,10.380721972228644,12.690863720611114
172,data\1_SP-18.csv,60,12.572109779868718,10.373045747898717,7.475192965834482,12.053241768288808
173,data\1_SP-18.csv,70,11.391355252271676,8.991883569123548,5.204559449064496,10.965688729889084
174,data\1_SP-18.csv,80,8.7658521973087,6.517142595190262,3.1276197810755373,8.87611960090738
175,data\1_SP-18.csv,90,6.381586755011683,4.6267059923998515,2.0247272214014176,7.174463796974973
176,data\1_SP-2.csv,20,7.251670001515235,4.035528221519683,6.821820576668616,2.489462690852944
177,data\1_SP-2.csv,30,6.394859481503299,3.334644752337675,6.494840643140869,2.1072941692190876
178,data\1_SP-2.csv,40,3.5150979054006277,1.030476235045081,1.663475036364787,0.6352824649243111
179,data\1_SP-2.csv,50,2.162925795561472,0.7487742235720621,2.265307447579157,0.5469280850738427
180,data\1_SP-2.csv,60,1.5530356583388822,0.9400941478766079,1.7749434198125569,0.7003402990927681
181,data\1_SP-2.csv,70,1.92956285477023,1.4854573892940488,2.159691403245862,1.191125682131134
182,data\1_SP-2.csv,80,1.7620101358819777,1.2590310165580139,0.8336330267520252,1.015359141094122
183,data\1_SP-2.csv,90,1.6752219272312727,1.1350087827397781,0.6806276375598923,0.9247523614210207
184,data\1_SP-21.csv,20,42.12676455859104,38.90120020317653,34.309623185121495,41.718088947091374
185,data\1_SP-21.csv,30,33.64631516446726,25.29658461536414,15.38596010345607,30.561471155274536
186,data\1_SP-21.csv,40,20.49815346851365,13.283944333261775,4.568010914517468,20.510334180313954
187,data\1_SP-21.csv,50,16.49123687721858,10.449087808602119,1.9678403995436788,18.01891988306453
188,data\1_SP-21.csv,60,11.147105244244372,7.122962434632913,0.9753825221211637,14.617090212485024
189,data\1_SP-21.csv,70,7.597835933362693,5.075843395024002,0.41583681120581284,12.169507338053933
190,data\1_SP-21.csv,80,5.3839849473707835,3.963110348842146,0.5075445221631049,10.439725199383387
191,data\1_SP-21.csv,90,4.047770694365581,3.216550040119223,0.280779464110913,9.48544972279011
192,data\1_SP-23.csv,20,13.116024974500316,11.406415919730044,602.2836630636259,12.191707590091927
193,data\1_SP-23.csv,30,1.4112953886998152,0.8966962615790152,4.264442175046207,1.3311405338931415
194,data\1_SP-23.csv,40,0.503194490519577,1.246997021327698,3.8553845049761346,1.011465585089704
195,data\1_SP-23.csv,50,0.40177904473664083,1.3013884145405648,1.6336735889893956,0.8320807816723674
196,data\1_SP-23.csv,60,0.5378967117637476,0.983665873885793,1.0010073396356354,0.8278345528564164
197,data\1_SP-23.csv,70,0.4535655885338811,0.491565848929026,2.8099125224415813,1.1146050245412609
198,data\1_SP-23.csv,80,0.5866926857702145,0.6017709913879816,2.2594119811584648,1.460892813154599
199,data\1_SP-23.csv,90,0.7117527371636706,0.6781729753686052,0.6003291518938575,1.4891135231245114
200,data\1_SP-24.csv,20,8.05208321507387,2.3775483088799723,8.808339547201996,1.8054682221258365
201,data\1_SP-24.csv,30,4.754057585152563,1.8972328533869973,5.869420242870603,1.8346948063531192
202,data\1_SP-24.csv,40,3.7044220656872535,1.7774295583659288,5.438070310197358,1.487388512391807
203,data\1_SP-24.csv,50,3.3814507465626766,2.2423339061827465,5.156771184685447,0.7935985345444764
204,data\1_SP-24.csv,60,2.9580616982955585,2.1138244336006364,3.911737118094992,0.7008325198972941
205,data\1_SP-24.csv,70,2.053019642075373,1.3755461864353626,1.9783233512007146,0.8315397306624637
206,data\1_SP-24.csv,80,0.925154070288001,0.4176762471904959,0.48168303571445314,1.212222131618538
207,data\1_SP-24.csv,90,0.2631479686071642,0.2788168836221197,0.669556803256403,1.498288156663679
208,data\1_SP-27.csv,20,18.010609556858284,14.166985114707632,23.194832884944326,3.656394863473691
209,data\1_SP-27.csv,30,11.71354908610107,7.814156489676422,13.855485533288206,2.9853163240886675
210,data\1_SP-27.csv,40,6.586066767787878,2.817013389041188,5.688088848545767,4.590422827040999
211,data\1_SP-27.csv,50,3.3522604033921652,0.9786737289806023,2.6240804510051956,5.782538636584345
212,data\1_SP-27.csv,60,1.3335052593426149,1.6158617009779779,1.965224999359457,6.167856737452781
213,data\1_SP-27.csv,70,0.7395930072864558,1.742199982469519,1.3781521788721838,6.043388875004583
214,data\1_SP-27.csv,80,0.7129711553289985,1.9765310226371968,0.47991145803682334,6.111852384127282
215,data\1_SP-27.csv,90,0.9512041354104962,1.8979783064509756,0.401096122731131,5.927546475798311
216,data\1_SP-29.csv,20,58.11456968859943,54.20867884329497,72.7878344325526,47.176567041237234
217,data\1_SP-29.csv,30,42.261288398671475,37.208725595653966,55.65442483030424,33.51072091517887
218,data\1_SP-29.csv,40,30.26589551904199,25.41935167585668,39.27528850191659,24.03930285852246
219,data\1_SP-29.csv,50,22.045627271044555,17.410788234879284,28.384109882092144,17.082361204181726
220,data\1_SP-29.csv,60,12.58725003675586,8.625710340309544,21.141175191142423,8.736739005847276
221,data\1_SP-29.csv,70,10.379782274387619,6.498289228635464,17.61674109226546,6.623364989079403
222,data\1_SP-29.csv,80,9.388483891991743,5.731592744259239,13.96446983079995,5.867370452446342
223,data\1_SP-29.csv,90,8.083201483420313,4.860118636658717,11.355207422945249,4.998247642890794
224,data\1_SP-3.csv,20,2.7639666377013827,0.9505339793546425,2.1271474494439353,1.889746668823346
225,data\1_SP-3.csv,30,1.7588046260832937,1.0346779977857292,1.2190904976454986,1.0911784639097006
226,data\1_SP-3.csv,40,1.0122462164703974,0.3562513894553611,0.9133417471727429,1.3412176434826666
227,data\1_SP-3.csv,50,0.875772435310304,0.597764287699386,1.3473701648152487,0.8205124440118188
228,data\1_SP-3.csv,60,0.624543539369494,0.3742951816014111,0.9231072880468726,0.9030900318430175
229,data\1_SP-3.csv,70,0.8332515554331394,0.6103887926575137,1.11269087059214,0.7356865313899721
230,data\1_SP-3.csv,80,0.9419012904046294,0.6892736180113511,0.869350077634995,0.691929755323423
231,data\1_SP-3.csv,90,1.0498331495160493,0.7424376198659032,0.6773245400829682,0.6197977029042671
232,data\1_SP-31.csv,20,19.33714932197116,14.109524841969442,16.3240970149211,7.796826333425127
233,data\1_SP-31.csv,30,14.93768169180386,11.575579244717796,14.889609790138776,7.408257853548278
234,data\1_SP-31.csv,40,7.225161923150376,3.1546066039808682,7.222394920036293,3.5712235463176905
235,data\1_SP-31.csv,50,2.057140529710824,11.165257759960324,11.063404181253127,11.111250850191475
236,data\1_SP-31.csv,60,3.129236548164459,9.471968574955419,5.753283664275471,9.626092065807585
237,data\1_SP-31.csv,70,3.493324425986982,6.647691615846848,3.1139471987914424,7.358201799611277
238,data\1_SP-31.csv,80,3.7614567295505226,5.439641426488154,3.3922462564020117,6.468800659704724
239,data\1_SP-31.csv,90,3.6850586112356307,4.403414502163275,2.1002848993271788,5.7198909032835195
240,data\1_SP-4.csv,20,14.1800105801406,3.1497257010769313,2.3716109308472393,2.9888371479513616
241,data\1_SP-4.csv,30,8.814180972034736,2.3841507421739756,1.0193269965751968,2.421031029465271
242,data\1_SP-4.csv,40,4.020069458092881,4.266027202872742,6.595912285842589,4.856902549700719
243,data\1_SP-4.csv,50,1.5655809586933982,4.421824166333213,3.6168109381332747,4.737919350452426
244,data\1_SP-4.csv,60,2.8255889328529777,4.318780481087872,3.638592480485815,4.348949039715682
245,data\1_SP-4.csv,70,3.0098355177291696,3.5706976401314443,1.8948403042494955,3.665877481781085
246,data\1_SP-4.csv,80,3.3383481132125388,3.533116526395827,1.7187934268197498,3.8936071711885947
247,data\1_SP-4.csv,90,3.500274980525205,3.4634537756934947,1.0905947127296258,4.12898100426122
248,data\1_SP-5.csv,20,19.01982206124973,18.231684083564126,22.856744017504607,6.552090153390118
249,data\1_SP-5.csv,30,8.619850907506631,1.8732529579056163,6.122867503531058,1.9684593608640961
250,data\1_SP-5.csv,40,4.373489591201087,2.4254200148711518,5.99503921049501,3.5165520880592576
251,data\1_SP-5.csv,50,0.7840007911603155,3.1212360913344726,3.3018738611819773,4.031962434343803
252,data\1_SP-5.csv,60,1.385233520758738,2.9946337522798414,2.51980850430202,4.095636621635693
253,data\1_SP-5.csv,70,1.3376003278793556,2.155169165017391,1.217087121208194,3.848020332177294
254,data\1_SP-5.csv,80,1.5794214196008316,2.145853516105067,1.6616812187056658,4.1534635206323545
255,data\1_SP-5.csv,90,1.6476033879915875,1.9262754528654276,0.9602577234857359,4.3428653785188365
256,data\1_SP-6.csv,20,18.823368133620573,9.711298695408024,18.89361772643047,5.532272743878993
257,data\1_SP-6.csv,30,7.2850741787827795,3.40676523188954,13.020198301363921,4.910197270345021
258,data\1_SP-6.csv,40,4.150725891586423,3.779152594657274,2.932826525485085,5.162388657496632
259,data\1_SP-6.csv,50,3.590739524819434,5.876445324519404,6.519352298532605,6.766107158344899
260,data\1_SP-6.csv,60,5.257258756772454,6.6405512761123,7.02026603377924,7.704340475747744
261,data\1_SP-6.csv,70,6.499622877299118,7.338520754512718,6.2149369211993335,8.734147830763076
262,data\1_SP-6.csv,80,7.197584388519787,7.16748519483013,4.571515896385614,9.240389511522254
263,data\1_SP-6.csv,90,7.258476142471198,6.391707237133926,2.5189317643384292,9.378416986074912
264,data\1_SP-8.csv,20,13.724402266628424,3.8474261858726027,4.297387192543221,2.979953000441522
265,data\1_SP-8.csv,30,8.117162803997703,1.8192082930013656,10.859572755132064,3.763598263372951
266,data\1_SP-8.csv,40,5.601929975825574,3.1750076497104125,4.600704081525033,4.351429810828936
267,data\1_SP-8.csv,50,5.418106443167945,4.1632861639884515,6.812329827763838,4.8346123593513175
268,data\1_SP-8.csv,60,4.541530280936754,3.5537333439080747,4.588534853343822,4.8770768338388235
269,data\1_SP-8.csv,70,5.02028811636518,3.9026228580560693,3.7664338358837894,5.709616335803563
270,data\1_SP-8.csv,80,5.435344889150946,3.916965279400222,3.2045994621080216,6.627286940187872
271,data\1_SP-8.csv,90,5.48054191461318,3.437963134670824,1.7600499561277778,7.513525270362268
1 File Data_usage RMSE_hyper_original RMSE_hyper_nonlinear Final_error_hyper_original Final_error_hyper_nonlinear
2 0 data\1_S-1.csv 20 23.478646116979654 16.776209296837532 31.147089838760067 16.776209296837532
3 1 data\1_S-1.csv 30 12.402243644854485 5.208861608476322 13.42602435195194 5.208861608476322
4 2 data\1_S-1.csv 40 5.5477225601078475 2.4340047901478026 3.137413028656972 2.4340047901478026
5 3 data\1_S-1.csv 50 1.4243573608600337 5.339485942822988 1.5491904788507092 5.339485942822988
6 4 data\1_S-1.csv 60 1.2405425139403812 5.484226338578135 2.4292610036214497 5.484226338578135
7 5 data\1_S-1.csv 70 1.597066962397822 4.027720666840552 1.0042867085237617 4.027720666840552
8 6 data\1_S-1.csv 80 1.5539368201809547 3.3570950843708673 0.3671659497912856 3.3570950843708673
9 7 data\1_S-1.csv 90 1.1605550014743073 2.5042477994964543 0.3815598208090165 2.5042477994964543
10 8 data\1_S-10.csv 20 2.250454268092718 11.945795822232032 5.458857525298658 12.78210944667846
11 9 data\1_S-10.csv 30 1.4798556806649208 4.5201471879813395 5.56697174346722 6.187128156863005
12 10 data\1_S-10.csv 40 2.5831593209425114 1.5068804246967553 7.327682225114709 1.2159945876728537
13 11 data\1_S-10.csv 50 3.0493487660606946 2.5290835903126405 6.543763194275195 0.7580449556824689
14 12 data\1_S-10.csv 60 2.753018935138921 2.4773563031889623 5.197657553387721 1.1114680943428539
15 13 data\1_S-10.csv 70 2.057161629717554 1.852262568800247 3.5981758084098927 0.7917721159345887
16 14 data\1_S-10.csv 80 1.385275833572099 1.222635822549523 3.0372816823669457 0.28624544571854166
17 15 data\1_S-10.csv 90 1.2289805279797732 1.1001404713990144 2.659062579968389 0.22576196364864093
18 16 data\1_S-11.csv 20 12.780165484446645 3.543442987743452 14.142903035702759 2.8057093191787796
19 17 data\1_S-11.csv 30 8.950467372059691 1.8083726479927158 10.92937956217384 1.2372043888069384
20 18 data\1_S-11.csv 40 6.0781469397310275 2.0814044264045988 8.545036423072245 1.6105013874823666
21 19 data\1_S-11.csv 50 4.354144249638527 1.830001873935883 6.658170772673151 1.4688426083053616
22 20 data\1_S-11.csv 60 3.0600926275659055 1.5911267267597402 5.316149584849218 1.336850488399163
23 21 data\1_S-11.csv 70 2.0782232665915683 1.023377922742072 3.7693273765738313 0.8323985798147107
24 22 data\1_S-11.csv 80 1.3106083121407994 0.46948359525194167 3.2221638079518704 0.29468631398794154
25 23 data\1_S-11.csv 90 1.1328843800677029 0.4200675824984277 2.8519660229689157 0.2547636891884459
26 24 data\1_S-12.csv 20 2.7120407627429746 7.298582927104371 13.542896407505745 2.6778432237681407
27 25 data\1_S-12.csv 30 5.402183151249969 7.687632014330983 12.39344963386265 3.7415741342788835
28 26 data\1_S-12.csv 40 4.394685384926156 4.845951876514215 6.954026249999055 2.412851448737444
29 27 data\1_S-12.csv 50 3.2605713395995304 3.1319161474217667 4.935018097624205 1.4510820822297386
30 28 data\1_S-12.csv 60 1.9783184512590368 1.569473731965631 2.850940115587415 0.5703161045481381
31 29 data\1_S-12.csv 70 1.0000004382811707 0.5560357418512717 2.1698581422986623 0.38681115435021735
32 30 data\1_S-12.csv 80 0.8241746816026769 0.45382185232957534 1.8254973815355815 0.3919724859787349
33 31 data\1_S-12.csv 90 0.7085626123177089 0.417602660005857 1.4335822794754267 0.32528847438603103
34 32 data\1_S-15.csv 20 0.2880082260432656 0.31324495710969785 0.4022129400876201 0.31324495710969785
35 33 data\1_S-15.csv 30 0.2612327425554409 0.1982982487483713 0.15485897379953692 0.1982982487483713
36 34 data\1_S-15.csv 40 0.1627146650925451 0.0847291405415234 0.038989961050724664 0.0847291405415234
37 35 data\1_S-15.csv 50 0.09403647123965381 0.03947355449793594 0.016236014905314802 0.03947355449793594
38 36 data\1_S-15.csv 60 0.05952893520483399 0.023106062873209498 0.005718866196795912 0.023106062873209498
39 37 data\1_S-15.csv 70 0.04473399276446019 0.016377408145597953 0.0022423032047758674 0.016377408145597953
40 38 data\1_S-15.csv 80 0.033746284419315604 0.014448091335809161 0.007188935630891185 0.014448091335809161
41 39 data\1_S-15.csv 90 0.02766081220100747 0.013596987999911315 0.006864032090390862 0.013596987999911315
42 40 data\1_S-16.csv 20 3.3040962181845503 2.5459436259747408 3.3531886022017394 2.5459436259747408
43 41 data\1_S-16.csv 30 3.397577659982119 2.1593623899054246 6.806972770490538 2.1593623899054246
44 42 data\1_S-16.csv 40 3.5615235188381624 3.0031596961493916 6.7713581454297 3.0031596961493916
45 43 data\1_S-16.csv 50 2.979305758737618 2.456347223799883 4.62235381428586 2.456347223799883
46 44 data\1_S-16.csv 60 2.440684687417658 1.9674064134436176 3.7587013753882332 1.9674064134436176
47 45 data\1_S-16.csv 70 1.9611474785668164 1.5509606603565687 2.4317880070651103 1.5509606603565687
48 46 data\1_S-16.csv 80 1.147210901886969 0.7794500638783542 1.0220331261428133 0.7794500638783542
49 47 data\1_S-16.csv 90 0.6658320594808093 0.3599471149325066 1.153154586718134 0.3599471149325066
50 48 data\1_S-17.csv 20 14.817149675077845 11.00820026665355 19.49554522452195 11.00820026665355
51 49 data\1_S-17.csv 30 12.619854078927927 9.134481442421977 16.03629997348982 9.134481442421977
52 50 data\1_S-17.csv 40 9.602067756400896 6.47474795338568 11.477366749731411 6.47474795338568
53 51 data\1_S-17.csv 50 6.782687807338599 3.914529880205498 6.842442053294446 3.914529880205498
54 52 data\1_S-17.csv 60 4.4393395624054275 2.0008384382997764 4.276987675473648 2.0008384382997764
55 53 data\1_S-17.csv 70 2.931857444605733 1.0695640076905621 3.2225789084675727 1.0695640076905621
56 54 data\1_S-17.csv 80 1.630643658296253 0.3125213348966345 1.8326739324209824 0.3125213348966345
57 55 data\1_S-17.csv 90 0.9032383117232653 0.24827782525448813 1.674370356936783 0.24827782525448813
58 56 data\1_S-18.csv 20 4.8569683354725655 8.370185056504068 14.865095422926293 8.370185056504068
59 57 data\1_S-18.csv 30 7.502879610626537 9.170910252757494 13.6454883261436 9.170910252757494
60 58 data\1_S-18.csv 40 7.138752761075896 7.328752844478417 9.095760769015405 7.328752844478417
61 59 data\1_S-18.csv 50 5.233986629512829 4.185885403593828 3.6322332834046427 4.185885403593828
62 60 data\1_S-18.csv 60 3.67241324585774 2.169070128892058 2.154039188017579 2.169070128892058
63 61 data\1_S-18.csv 70 2.5424291135664294 1.1802477097783282 2.064256197436636 1.1802477097783282
64 62 data\1_S-18.csv 80 2.316459386629839 1.1667965600421817 1.7712363628695194 1.1667965600421817
65 63 data\1_S-18.csv 90 2.2309174292325835 1.2202603294310326 1.215885316632567 1.2202603294310326
66 64 data\1_S-19.csv 20 0.4813921356094701 0.38645090597916665 0.38645090597916665
67 65 data\1_S-19.csv 30 0.2542390778983757 0.4486975357849197 1.4578288563061808 0.4486975357849197
68 66 data\1_S-19.csv 40 0.31581380528892206 0.3508458151659684 0.38722202897310515 0.3508458151659684
69 67 data\1_S-19.csv 50 0.4289141972590556 0.47865360212276115 0.17735833501852744 0.47865360212276115
70 68 data\1_S-19.csv 60 0.6124097428850761 0.6727217066022969 0.5650083536577103 0.6727217066022969
71 69 data\1_S-19.csv 70 0.5623432486393993 0.5988132191913642 0.3048821664614563 0.5988132191913642
72 70 data\1_S-19.csv 80 0.4580512395915517 0.5006204677271572 0.22446438982174222 0.5006204677271572
73 71 data\1_S-19.csv 90 0.3623750170500113 0.42372832622671464 0.18242844832152194 0.42372832622671464
74 72 data\1_S-2.csv 20 29.13824269821142 32.97006600177633 50.98953962583674 32.97006600177633
75 73 data\1_S-2.csv 30 29.094378311540368 26.78893971941293 45.95952965698194 26.78893971941293
76 74 data\1_S-2.csv 40 25.668812328945442 19.737664954989953 24.389044284038413 19.737664954989953
77 75 data\1_S-2.csv 50 21.583732110692612 13.578484970142826 12.336281678713968 13.578484970142826
78 76 data\1_S-2.csv 60 16.62078573542056 8.641182434779754 6.562214890034458 8.641182434779754
79 77 data\1_S-2.csv 70 10.811437650017501 4.671426204672148 3.462313585656565 4.671426204672148
80 78 data\1_S-2.csv 80 9.173065296379605 3.754546671085857 2.5270190520652127 3.754546671085857
81 79 data\1_S-2.csv 90 7.478016107420814 3.0808772341682698 2.4566348296251874 3.0808772341682698
82 80 data\1_S-20.csv 20 1.5991320251442396 0.734274177067469 0.734274177067469
83 81 data\1_S-20.csv 30 0.983467706082507 0.5566263918424004 0.6891888364909496 0.5566263918424004
84 82 data\1_S-20.csv 40 1.0445947683198489 1.8102553204615202 3.0507083248841558 1.8102553204615202
85 83 data\1_S-20.csv 50 1.0135995303584442 1.2428489549759612 1.3546541436513129 1.2428489549759612
86 84 data\1_S-20.csv 60 0.9359575571420113 0.9239063949715502 0.9803172858616156 0.9239063949715502
87 85 data\1_S-20.csv 70 1.0160045814445942 0.9713676236655032 0.9647285147730768 0.9713676236655032
88 86 data\1_S-20.csv 80 0.9330057968496768 0.8398552977157308 0.8579451894453256 0.8398552977157308
89 87 data\1_S-20.csv 90 0.7810454819952506 0.6916580785283166 0.5899582590956429 0.6916580785283166
90 88 data\1_S-3.csv 20 31.079801282684922 20.79725899625463 28.308551362298864 20.79725899625463
91 89 data\1_S-3.csv 30 15.753554144633085 2.6352848578842987 4.702100098681567 2.6352848578842987
92 90 data\1_S-3.csv 40 6.0485793575074664 7.374862524981409 5.6935020904941345 7.374862524981409
93 91 data\1_S-3.csv 50 2.094048920603935 8.202986587700892 6.144855383897656 8.202986587700892
94 92 data\1_S-3.csv 60 1.4543199299679703 7.237301240068834 5.584626897838916 7.237301240068834
95 93 data\1_S-3.csv 70 2.19394289660755 5.393455869919254 3.771152629539646 5.393455869919254
96 94 data\1_S-3.csv 80 2.4322158153771154 4.8844137991230685 2.6133509468069507 4.8844137991230685
97 95 data\1_S-3.csv 90 2.734140059942362 4.359378633827035 2.404017139031467 4.359378633827035
98 96 data\1_S-4.csv 20 28.378259539192584 20.76394535575388 33.956392919022214 20.76394535575388
99 97 data\1_S-4.csv 30 16.61106216131759 8.942811079170239 18.710539650936383 8.942811079170239
100 98 data\1_S-4.csv 40 9.797519852171225 2.5496599587282107 8.412714329822519 2.5496599587282107
101 99 data\1_S-4.csv 50 6.125834599642608 2.6040335337737477 1.9179721973123014 2.6040335337737477
102 100 data\1_S-4.csv 60 2.8788592236974906 4.206983125971776 1.7072180407065176 4.206983125971776
103 101 data\1_S-4.csv 70 0.4085160425472198 4.062087348253181 1.6008828051224104 4.062087348253181
104 102 data\1_S-4.csv 80 0.47595142031207355 3.724576037953115 0.5935342876852995 3.724576037953115
105 103 data\1_S-4.csv 90 0.4702196369976548 2.770238687192787 0.09388708245413113 2.770238687192787
106 104 data\1_S-5.csv 20 1.967727423890477 1.3254354393668206 1.9607824925465678 1.3254354393668206
107 105 data\1_S-5.csv 30 1.4382082353192773 1.919434236053275 2.023289939059952 1.919434236053275
108 106 data\1_S-5.csv 40 2.7465167206481573 4.409602595386762 5.725165924900896 4.409602595386762
109 107 data\1_S-5.csv 50 3.461920761656759 4.381575529957983 5.075875198611303 4.381575529957983
110 108 data\1_S-5.csv 60 4.361846022920693 4.604849959229172 4.208858373774062 4.604849959229172
111 109 data\1_S-5.csv 70 4.3969327856562845 4.205632373475578 3.2719092143242556 4.205632373475578
112 110 data\1_S-5.csv 80 4.096266723294103 3.499985586090912 2.1966796537602513 3.499985586090912
113 111 data\1_S-5.csv 90 3.4604082851893114 2.689997383766356 1.2253835699076183 2.689997383766356
114 112 data\1_S-6.csv 20 3.053759492348517 2.001309307753893 4.399864757510363 2.001309307753893
115 113 data\1_S-6.csv 30 0.6616315454047025 2.8758400900404943 2.3907096778655346 2.8758400900404943
116 114 data\1_S-6.csv 40 1.8154121853645282 3.2214327224410306 2.5461929166560875 3.2214327224410306
117 115 data\1_S-6.csv 50 1.296886856905884 1.4915193295518268 0.639996196106986 1.4915193295518268
118 116 data\1_S-6.csv 60 0.8015748472732784 0.696411033119271 0.5934316617703056 0.696411033119271
119 117 data\1_S-6.csv 70 0.7876144436121876 0.6730390296235668 0.1265165575151855 0.6730390296235668
120 118 data\1_S-6.csv 80 0.8779263334065708 0.7750307740182709 0.4493235452909501 0.7750307740182709
121 119 data\1_S-6.csv 90 0.7501681896633152 0.6416649676648516 0.12849860415305325 0.6416649676648516
122 120 data\1_S-7.csv 20 5.365254081514151 3.8657561591156813 6.2385985725116875 3.8657561591156813
123 121 data\1_S-7.csv 30 6.020986058758559 6.135746944313514 7.534740868368928 6.135746944313514
124 122 data\1_S-7.csv 40 5.674619852269969 4.703357957475107 5.468678771443814 4.703357957475107
125 123 data\1_S-7.csv 50 3.4690575924798996 1.8878183084882048 1.6025113529316266 1.8878183084882048
126 124 data\1_S-7.csv 60 2.7451423754747624 1.4731986021963825 1.2925956551006061 1.4731986021963825
127 125 data\1_S-7.csv 70 2.7072833040182207 1.5925145664383469 1.5625936995519176 1.5925145664383469
128 126 data\1_S-7.csv 80 2.621881865553797 1.7290734621115118 1.721165557371262 1.7290734621115118
129 127 data\1_S-7.csv 90 2.266894911924734 1.4570027185864196 1.0957970213384967 1.4570027185864196
130 128 data\1_S-8.csv 20 18.11867407113544 14.215247739318466 22.404300227967695 13.446664866431115
131 129 data\1_S-8.csv 30 14.514699952893631 11.335799950369877 17.58355261139789 10.86796392608233
132 130 data\1_S-8.csv 40 11.075185948305768 6.8509390887115895 9.530043636696428 6.673867126195534
133 131 data\1_S-8.csv 50 7.186567380657684 2.8339403044579425 3.85833262551545 2.7885364868377245
134 132 data\1_S-8.csv 60 4.170061258682651 0.9040062070909864 1.1686720201047711 0.9105324134896468
135 133 data\1_S-8.csv 70 1.5780417387192855 1.4050145672359917 0.35952798393250346 1.4178734518905698
136 134 data\1_S-8.csv 80 0.5058499106073733 1.6205084705479829 0.4184494053158285 1.6366433460233913
137 135 data\1_S-8.csv 90 0.4578779578295943 1.6313760499123662 0.2256783271406 1.6521997346239476
138 136 data\1_S-9.csv 20 23.23466856539556 14.38965667065365 11.415193360584711 17.60095766072406
139 137 data\1_S-9.csv 30 8.740016212536279 1.254088481183067 6.8867355672344175 4.699099274275911
140 138 data\1_S-9.csv 40 0.7725497801920852 4.342346270472876 8.128363400745855 0.8423842661623222
141 139 data\1_S-9.csv 50 1.604201044849245 4.046644394358106 6.002530432463326 0.828713418284349
142 140 data\1_S-9.csv 60 1.3390917223895678 2.428693627890554 3.816309142062488 1.0597756937496738
143 141 data\1_S-9.csv 70 1.2202180455836111 1.9103128992797382 3.0048787355486817 1.310797523750748
144 142 data\1_S-9.csv 80 0.5617299433168577 0.9928155840050683 1.4040243056990842 1.8418478186652112
145 143 data\1_S-9.csv 90 0.22486696052940594 0.5792833717765682 1.3539869222261414 2.1243071866986516
146 144 data\1_SP-11.csv 20 1.7081991927226081 7.2313561231667896 6.18712689484869 3.5433619581079885
147 145 data\1_SP-11.csv 30 1.5756064331383481 1.4508379762295698 10.672594578553554 1.617156571881448
148 146 data\1_SP-11.csv 40 1.666416631660893 1.9147387544365118 3.5102269392885606 2.0539228359031503
149 147 data\1_SP-11.csv 50 2.292818865830556 3.0276355451630215 5.7946017504485265 3.032368564205978
150 148 data\1_SP-11.csv 60 1.889989812312286 1.7249795942495172 2.526077644495358 2.0433210528715673
151 149 data\1_SP-11.csv 70 2.103608751730582 1.8058365765796776 1.9073165276319612 2.238909008345376
152 150 data\1_SP-11.csv 80 1.8788628904767846 1.162865729788941 1.1848375699933602 2.0019114454225315
153 151 data\1_SP-11.csv 90 1.6578045150943486 0.8013356838663631 0.3893484790967483 1.835912955550954
154 152 data\1_SP-13.csv 20 0.4372325497058458 3.6243420678089686 7.415206093573297 0.6251074747335184
155 153 data\1_SP-13.csv 30 0.7131156843560439 1.182411372082287 2.1000835574758305 0.49852265726353917
156 154 data\1_SP-13.csv 40 0.4278189077600768 0.39601474936665476 2.735854312131982 0.8957677532161553
157 155 data\1_SP-13.csv 50 1.4339059010061033 1.9491290609659973 2.656249815428144 0.7047311863777824
158 156 data\1_SP-13.csv 60 0.39242710983822804 0.15258643592231405 1.3278099872124942 0.5322267611739026
159 157 data\1_SP-13.csv 70 0.18072037145060008 0.2617744847181645 1.261638455555825 0.691105669926377
160 158 data\1_SP-13.csv 80 0.17867732178011012 0.1735062337331057 0.40809888582969184 0.698209101804319
161 159 data\1_SP-13.csv 90 0.19491393115805777 0.12209966495242676 0.4554548974773021 0.6823303798309936
162 160 data\1_SP-17.csv 20 18.507066346497727 18.605257986168017 8.520723473217428 9.226100175280822
163 161 data\1_SP-17.csv 30 5.320558014435307 4.776189146250437 31.302259975691005 4.6214332180141895
164 162 data\1_SP-17.csv 40 1.7586801283380498 4.547990441524903 3.797922268658988 4.561169272178184
165 163 data\1_SP-17.csv 50 2.7919874072221913 3.499394713176624 3.6674731091011044 3.661841220811493
166 164 data\1_SP-17.csv 60 4.509512187046268 5.062010812243616 6.293231675366611 5.19153025332887
167 165 data\1_SP-17.csv 70 4.477434583027644 4.415713384649314 2.715851907697277 4.835842604836214
168 166 data\1_SP-17.csv 80 4.118355090968156 3.5969326524892806 1.6372084145126302 4.409162438716603
169 167 data\1_SP-17.csv 90 3.5226698829318543 2.7625898354405023 0.9570607962268323 3.912308283959222
170 168 data\1_SP-18.csv 20 7.606253940268715 15.613827267689272 21.055177174811675 16.01873246119757
171 169 data\1_SP-18.csv 30 14.367568344429996 18.4759301869696 21.26918604052492 18.839682917325284
172 170 data\1_SP-18.csv 40 15.142173533690988 15.260101482485425 12.11525582622308 16.025220403227284
173 171 data\1_SP-18.csv 50 13.236830193943605 11.361940339119686 10.380721972228644 12.690863720611114
174 172 data\1_SP-18.csv 60 12.572109779868718 10.373045747898717 7.475192965834482 12.053241768288808
175 173 data\1_SP-18.csv 70 11.391355252271676 8.991883569123548 5.204559449064496 10.965688729889084
176 174 data\1_SP-18.csv 80 8.7658521973087 6.517142595190262 3.1276197810755373 8.87611960090738
177 175 data\1_SP-18.csv 90 6.381586755011683 4.6267059923998515 2.0247272214014176 7.174463796974973
178 176 data\1_SP-2.csv 20 7.251670001515235 4.035528221519683 6.821820576668616 2.489462690852944
179 177 data\1_SP-2.csv 30 6.394859481503299 3.334644752337675 6.494840643140869 2.1072941692190876
180 178 data\1_SP-2.csv 40 3.5150979054006277 1.030476235045081 1.663475036364787 0.6352824649243111
181 179 data\1_SP-2.csv 50 2.162925795561472 0.7487742235720621 2.265307447579157 0.5469280850738427
182 180 data\1_SP-2.csv 60 1.5530356583388822 0.9400941478766079 1.7749434198125569 0.7003402990927681
183 181 data\1_SP-2.csv 70 1.92956285477023 1.4854573892940488 2.159691403245862 1.191125682131134
184 182 data\1_SP-2.csv 80 1.7620101358819777 1.2590310165580139 0.8336330267520252 1.015359141094122
185 183 data\1_SP-2.csv 90 1.6752219272312727 1.1350087827397781 0.6806276375598923 0.9247523614210207
186 184 data\1_SP-21.csv 20 42.12676455859104 38.90120020317653 34.309623185121495 41.718088947091374
187 185 data\1_SP-21.csv 30 33.64631516446726 25.29658461536414 15.38596010345607 30.561471155274536
188 186 data\1_SP-21.csv 40 20.49815346851365 13.283944333261775 4.568010914517468 20.510334180313954
189 187 data\1_SP-21.csv 50 16.49123687721858 10.449087808602119 1.9678403995436788 18.01891988306453
190 188 data\1_SP-21.csv 60 11.147105244244372 7.122962434632913 0.9753825221211637 14.617090212485024
191 189 data\1_SP-21.csv 70 7.597835933362693 5.075843395024002 0.41583681120581284 12.169507338053933
192 190 data\1_SP-21.csv 80 5.3839849473707835 3.963110348842146 0.5075445221631049 10.439725199383387
193 191 data\1_SP-21.csv 90 4.047770694365581 3.216550040119223 0.280779464110913 9.48544972279011
194 192 data\1_SP-23.csv 20 13.116024974500316 11.406415919730044 602.2836630636259 12.191707590091927
195 193 data\1_SP-23.csv 30 1.4112953886998152 0.8966962615790152 4.264442175046207 1.3311405338931415
196 194 data\1_SP-23.csv 40 0.503194490519577 1.246997021327698 3.8553845049761346 1.011465585089704
197 195 data\1_SP-23.csv 50 0.40177904473664083 1.3013884145405648 1.6336735889893956 0.8320807816723674
198 196 data\1_SP-23.csv 60 0.5378967117637476 0.983665873885793 1.0010073396356354 0.8278345528564164
199 197 data\1_SP-23.csv 70 0.4535655885338811 0.491565848929026 2.8099125224415813 1.1146050245412609
200 198 data\1_SP-23.csv 80 0.5866926857702145 0.6017709913879816 2.2594119811584648 1.460892813154599
201 199 data\1_SP-23.csv 90 0.7117527371636706 0.6781729753686052 0.6003291518938575 1.4891135231245114
202 200 data\1_SP-24.csv 20 8.05208321507387 2.3775483088799723 8.808339547201996 1.8054682221258365
203 201 data\1_SP-24.csv 30 4.754057585152563 1.8972328533869973 5.869420242870603 1.8346948063531192
204 202 data\1_SP-24.csv 40 3.7044220656872535 1.7774295583659288 5.438070310197358 1.487388512391807
205 203 data\1_SP-24.csv 50 3.3814507465626766 2.2423339061827465 5.156771184685447 0.7935985345444764
206 204 data\1_SP-24.csv 60 2.9580616982955585 2.1138244336006364 3.911737118094992 0.7008325198972941
207 205 data\1_SP-24.csv 70 2.053019642075373 1.3755461864353626 1.9783233512007146 0.8315397306624637
208 206 data\1_SP-24.csv 80 0.925154070288001 0.4176762471904959 0.48168303571445314 1.212222131618538
209 207 data\1_SP-24.csv 90 0.2631479686071642 0.2788168836221197 0.669556803256403 1.498288156663679
210 208 data\1_SP-27.csv 20 18.010609556858284 14.166985114707632 23.194832884944326 3.656394863473691
211 209 data\1_SP-27.csv 30 11.71354908610107 7.814156489676422 13.855485533288206 2.9853163240886675
212 210 data\1_SP-27.csv 40 6.586066767787878 2.817013389041188 5.688088848545767 4.590422827040999
213 211 data\1_SP-27.csv 50 3.3522604033921652 0.9786737289806023 2.6240804510051956 5.782538636584345
214 212 data\1_SP-27.csv 60 1.3335052593426149 1.6158617009779779 1.965224999359457 6.167856737452781
215 213 data\1_SP-27.csv 70 0.7395930072864558 1.742199982469519 1.3781521788721838 6.043388875004583
216 214 data\1_SP-27.csv 80 0.7129711553289985 1.9765310226371968 0.47991145803682334 6.111852384127282
217 215 data\1_SP-27.csv 90 0.9512041354104962 1.8979783064509756 0.401096122731131 5.927546475798311
218 216 data\1_SP-29.csv 20 58.11456968859943 54.20867884329497 72.7878344325526 47.176567041237234
219 217 data\1_SP-29.csv 30 42.261288398671475 37.208725595653966 55.65442483030424 33.51072091517887
220 218 data\1_SP-29.csv 40 30.26589551904199 25.41935167585668 39.27528850191659 24.03930285852246
221 219 data\1_SP-29.csv 50 22.045627271044555 17.410788234879284 28.384109882092144 17.082361204181726
222 220 data\1_SP-29.csv 60 12.58725003675586 8.625710340309544 21.141175191142423 8.736739005847276
223 221 data\1_SP-29.csv 70 10.379782274387619 6.498289228635464 17.61674109226546 6.623364989079403
224 222 data\1_SP-29.csv 80 9.388483891991743 5.731592744259239 13.96446983079995 5.867370452446342
225 223 data\1_SP-29.csv 90 8.083201483420313 4.860118636658717 11.355207422945249 4.998247642890794
226 224 data\1_SP-3.csv 20 2.7639666377013827 0.9505339793546425 2.1271474494439353 1.889746668823346
227 225 data\1_SP-3.csv 30 1.7588046260832937 1.0346779977857292 1.2190904976454986 1.0911784639097006
228 226 data\1_SP-3.csv 40 1.0122462164703974 0.3562513894553611 0.9133417471727429 1.3412176434826666
229 227 data\1_SP-3.csv 50 0.875772435310304 0.597764287699386 1.3473701648152487 0.8205124440118188
230 228 data\1_SP-3.csv 60 0.624543539369494 0.3742951816014111 0.9231072880468726 0.9030900318430175
231 229 data\1_SP-3.csv 70 0.8332515554331394 0.6103887926575137 1.11269087059214 0.7356865313899721
232 230 data\1_SP-3.csv 80 0.9419012904046294 0.6892736180113511 0.869350077634995 0.691929755323423
233 231 data\1_SP-3.csv 90 1.0498331495160493 0.7424376198659032 0.6773245400829682 0.6197977029042671
234 232 data\1_SP-31.csv 20 19.33714932197116 14.109524841969442 16.3240970149211 7.796826333425127
235 233 data\1_SP-31.csv 30 14.93768169180386 11.575579244717796 14.889609790138776 7.408257853548278
236 234 data\1_SP-31.csv 40 7.225161923150376 3.1546066039808682 7.222394920036293 3.5712235463176905
237 235 data\1_SP-31.csv 50 2.057140529710824 11.165257759960324 11.063404181253127 11.111250850191475
238 236 data\1_SP-31.csv 60 3.129236548164459 9.471968574955419 5.753283664275471 9.626092065807585
239 237 data\1_SP-31.csv 70 3.493324425986982 6.647691615846848 3.1139471987914424 7.358201799611277
240 238 data\1_SP-31.csv 80 3.7614567295505226 5.439641426488154 3.3922462564020117 6.468800659704724
241 239 data\1_SP-31.csv 90 3.6850586112356307 4.403414502163275 2.1002848993271788 5.7198909032835195
242 240 data\1_SP-4.csv 20 14.1800105801406 3.1497257010769313 2.3716109308472393 2.9888371479513616
243 241 data\1_SP-4.csv 30 8.814180972034736 2.3841507421739756 1.0193269965751968 2.421031029465271
244 242 data\1_SP-4.csv 40 4.020069458092881 4.266027202872742 6.595912285842589 4.856902549700719
245 243 data\1_SP-4.csv 50 1.5655809586933982 4.421824166333213 3.6168109381332747 4.737919350452426
246 244 data\1_SP-4.csv 60 2.8255889328529777 4.318780481087872 3.638592480485815 4.348949039715682
247 245 data\1_SP-4.csv 70 3.0098355177291696 3.5706976401314443 1.8948403042494955 3.665877481781085
248 246 data\1_SP-4.csv 80 3.3383481132125388 3.533116526395827 1.7187934268197498 3.8936071711885947
249 247 data\1_SP-4.csv 90 3.500274980525205 3.4634537756934947 1.0905947127296258 4.12898100426122
250 248 data\1_SP-5.csv 20 19.01982206124973 18.231684083564126 22.856744017504607 6.552090153390118
251 249 data\1_SP-5.csv 30 8.619850907506631 1.8732529579056163 6.122867503531058 1.9684593608640961
252 250 data\1_SP-5.csv 40 4.373489591201087 2.4254200148711518 5.99503921049501 3.5165520880592576
253 251 data\1_SP-5.csv 50 0.7840007911603155 3.1212360913344726 3.3018738611819773 4.031962434343803
254 252 data\1_SP-5.csv 60 1.385233520758738 2.9946337522798414 2.51980850430202 4.095636621635693
255 253 data\1_SP-5.csv 70 1.3376003278793556 2.155169165017391 1.217087121208194 3.848020332177294
256 254 data\1_SP-5.csv 80 1.5794214196008316 2.145853516105067 1.6616812187056658 4.1534635206323545
257 255 data\1_SP-5.csv 90 1.6476033879915875 1.9262754528654276 0.9602577234857359 4.3428653785188365
258 256 data\1_SP-6.csv 20 18.823368133620573 9.711298695408024 18.89361772643047 5.532272743878993
259 257 data\1_SP-6.csv 30 7.2850741787827795 3.40676523188954 13.020198301363921 4.910197270345021
260 258 data\1_SP-6.csv 40 4.150725891586423 3.779152594657274 2.932826525485085 5.162388657496632
261 259 data\1_SP-6.csv 50 3.590739524819434 5.876445324519404 6.519352298532605 6.766107158344899
262 260 data\1_SP-6.csv 60 5.257258756772454 6.6405512761123 7.02026603377924 7.704340475747744
263 261 data\1_SP-6.csv 70 6.499622877299118 7.338520754512718 6.2149369211993335 8.734147830763076
264 262 data\1_SP-6.csv 80 7.197584388519787 7.16748519483013 4.571515896385614 9.240389511522254
265 263 data\1_SP-6.csv 90 7.258476142471198 6.391707237133926 2.5189317643384292 9.378416986074912
266 264 data\1_SP-8.csv 20 13.724402266628424 3.8474261858726027 4.297387192543221 2.979953000441522
267 265 data\1_SP-8.csv 30 8.117162803997703 1.8192082930013656 10.859572755132064 3.763598263372951
268 266 data\1_SP-8.csv 40 5.601929975825574 3.1750076497104125 4.600704081525033 4.351429810828936
269 267 data\1_SP-8.csv 50 5.418106443167945 4.1632861639884515 6.812329827763838 4.8346123593513175
270 268 data\1_SP-8.csv 60 4.541530280936754 3.5537333439080747 4.588534853343822 4.8770768338388235
271 269 data\1_SP-8.csv 70 5.02028811636518 3.9026228580560693 3.7664338358837894 5.709616335803563
272 270 data\1_SP-8.csv 80 5.435344889150946 3.916965279400222 3.2045994621080216 6.627286940187872
273 271 data\1_SP-8.csv 90 5.48054191461318 3.437963134670824 1.7600499561277778 7.513525270362268

View File

@ -1,24 +1,24 @@
""" """
Title: Soft ground settlement prediction considering the step loading Title: Soft ground settlement prediction
Main Developer: Sang Inn Woo, Ph.D. @ Incheon National University Developer:
Sang Inn Woo, Ph.D. @ Incheon National University
Kwak Taeyoung, Ph.D. @ KICT
Starting Date: 2022-08-11 Starting Date: 2022-08-11
Abstract: Abstract:
This main objective of this code is to predict This main objective of this code is to predict
time vs. (consolidation) settlement curves of soft clay ground time vs. (consolidation) settlement curves of soft clay ground.
under step loading conditions.
The methodologies used are 1) superposition of time-settlement curves
and 2) nonlinear regression for hyperbolic curves.
""" """
# ================= # =================
# Import 섹션 # Import 섹션
# ================= # =================
import os.path import os.path
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from scipy.optimize import least_squares from scipy.optimize import least_squares
from scipy.interpolate import interp1d
# ================= # =================
@ -29,16 +29,26 @@ from scipy.optimize import least_squares
def generate_data_hyper(px, pt): def generate_data_hyper(px, pt):
return pt / (px[0] * pt + px[1]) return pt / (px[0] * pt + px[1])
# 주어진 계수를 이용하여 아사오카 시간-침하 곡선 반환
def generate_data_asaoka(px, pt, dt):
return (px[1] / (1 - px[0])) * (1 - (px[0] ** (pt / dt)))
# 회귀식과 측정치와의 잔차 반환 (비선형 쌍곡선) # 회귀식과 측정치와의 잔차 반환 (비선형 쌍곡선)
def fun_hyper_nonlinear(px, pt, py): def fun_hyper_nonlinear(px, pt, py):
return pt / (px[0] * pt + px[1]) - py return pt / (px[0] * pt + px[1]) - py
# 회귀식과 측정치와의 잔차 반환 (가중 비선형 쌍곡선)
def fun_hyper_weight_nonlinear(px, pt, py, pw):
return (pt / (px[0] * pt + px[1]) - py) * pw
# 회귀식과 측정치와의 잔차 반환 (기존 쌍곡선) # 회귀식과 측정치와의 잔차 반환 (기존 쌍곡선)
def fun_hyper_original(px, pt, py): def fun_hyper_original(px, pt, py):
return px[0] * pt + px[1] - pt / py return px[0] * pt + px[1] - pt / py
# 회귀식과 측정치와의 잔차 반환 (아사오카)
def fun_asaoka(px, ps_b, ps_a):
return px[0] * ps_b + px[1] - ps_a
# RMSE 산정 # RMSE 산정
def fun_rmse(py1, py2): def fun_rmse(py1, py2):
@ -46,35 +56,17 @@ def fun_rmse(py1, py2):
return np.sqrt(mse) return np.sqrt(mse)
def run_settle_prediction(input_file, output_dir, def run_settle_prediction(point_name, np_time, np_surcharge, np_settlement,
final_step_predict_percent, additional_predict_percent, final_step_predict_percent, additional_predict_percent, asaoka_interval = 5):
plot_show,
print_values,
run_original_hyperbolic='True',
run_nonlinear_hyperbolic='True',
run_step_prediction='True',
settle_unit='cm'):
# ==================== # ====================
# 파일 읽기, 데이터 설정 # 파일 읽기, 데이터 설정
# ==================== # ====================
# 현재 파일 이름 출력
print("Working on " + input_file)
# CSV 파일 읽기
data = pd.read_csv(input_file, encoding='euc-kr')
# 시간, 침하량, 성토고 배열 생성 # 시간, 침하량, 성토고 배열 생성
time = data['Time'].to_numpy() time = np_time
settle = data['Settlement'].to_numpy() settle = np_settlement
surcharge = data['Surcharge'].to_numpy() surcharge = np_surcharge
# 만일 침하량의 단위가 m일 경우, 조정
if settle_unit == 'm':
settle = settle * 100
# 데이터 닫기
# 마지막 계측 데이터 index + 1 파악 # 마지막 계측 데이터 index + 1 파악
final_index = time.size final_index = time.size
@ -94,12 +86,11 @@ def run_settle_prediction(input_file, output_dir,
# 단계 시작 시점 초기화 # 단계 시작 시점 초기화
step_start_date = 0 step_start_date = 0
# 모든 시간-성토고 데이터에서 순차적으로 확인 # 모든 시간-성토고 데이터에서 순차적으로 확인
for index in range(len(surcharge)): for index in range(len(surcharge)):
# 만일 성토고의 변화가 있을 경우, # 만일 성토고의 변화가 있을 경우,
if surcharge[index] != current_surcharge: if surcharge[index] > current_surcharge*1.05 or surcharge[index] < current_surcharge*0.95:
step_end_index.append(index) step_end_index.append(index)
step_start_index.append(index) step_start_index.append(index)
current_surcharge = surcharge[index] current_surcharge = surcharge[index]
@ -242,8 +233,6 @@ def run_settle_prediction(input_file, output_dir,
# 쌍곡선 계수 저장 및 출력 # 쌍곡선 계수 저장 및 출력
x_step = res_lsq_hyper_nonlinear.x x_step = res_lsq_hyper_nonlinear.x
if print_values:
print(x_step)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지) # 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_to_end_update = generate_data_hyper(x_step, tm_to_end) sp_to_end_update = generate_data_hyper(x_step, tm_to_end)
@ -253,13 +242,8 @@ def run_settle_prediction(input_file, output_dir,
sp_step[step_start_index[i]:final_index] + sp_to_end_update + s0_this_step sp_step[step_start_index[i]:final_index] + sp_to_end_update + s0_this_step
# ========================================================= # =========================================================
# Settlement prediction (nonliner and original hyperbolic) # Settlement prediction (nonliner, weighted nonlinear and original hyperbolic)
# ========================================================= # =========================================================
# 성토 마지막 데이터 추출 # 성토 마지막 데이터 추출
@ -286,8 +270,16 @@ def run_settle_prediction(input_file, output_dir,
args=(tm_hyper, sm_hyper)) args=(tm_hyper, sm_hyper))
# 비선형 쌍곡선 법 계수 저장 및 출력 # 비선형 쌍곡선 법 계수 저장 및 출력
x_hyper_nonlinear = res_lsq_hyper_nonlinear.x x_hyper_nonlinear = res_lsq_hyper_nonlinear.x
if print_values:
print(x_hyper_nonlinear) # 가중 비선형 쌍곡선 가중치 산정
weight = tm_hyper / np.sum(tm_hyper)
# 회귀분석 시행 (가중 비선형 쌍곡선)
x0 = np.ones(2)
res_lsq_hyper_weight_nonlinear = least_squares(fun_hyper_weight_nonlinear, x0,
args=(tm_hyper, sm_hyper, weight))
# 비선형 쌍곡선 법 계수 저장 및 출력
x_hyper_weight_nonlinear = res_lsq_hyper_weight_nonlinear.x
# 회귀분석 시행 (기존 쌍곡선법) - (0, 0)에 해당하는 초기 데이터를 제외하고 회귀분석 실시 # 회귀분석 시행 (기존 쌍곡선법) - (0, 0)에 해당하는 초기 데이터를 제외하고 회귀분석 실시
x0 = np.ones(2) x0 = np.ones(2)
@ -295,240 +287,82 @@ def run_settle_prediction(input_file, output_dir,
args=(tm_hyper[1:], sm_hyper[1:])) args=(tm_hyper[1:], sm_hyper[1:]))
# 기존 쌍곡선 법 계수 저장 및 출력 # 기존 쌍곡선 법 계수 저장 및 출력
x_hyper_original = res_lsq_hyper_original.x x_hyper_original = res_lsq_hyper_original.x
if print_values:
print(x_hyper_original)
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지) # 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_hyper_nonlinear = generate_data_hyper(x_hyper_nonlinear, time_hyper) sp_hyper_nonlinear = generate_data_hyper(x_hyper_nonlinear, time_hyper)
sp_hyper_weight_nonlinear = generate_data_hyper(x_hyper_weight_nonlinear, time_hyper)
sp_hyper_original = generate_data_hyper(x_hyper_original, time_hyper) sp_hyper_original = generate_data_hyper(x_hyper_original, time_hyper)
# 예측 침하량 산정 # 예측 침하량 산정
sp_hyper_nonlinear = sp_hyper_nonlinear + s0_hyper sp_hyper_nonlinear = sp_hyper_nonlinear + s0_hyper
sp_hyper_weight_nonlinear = sp_hyper_weight_nonlinear + s0_hyper
sp_hyper_original = sp_hyper_original + s0_hyper sp_hyper_original = sp_hyper_original + s0_hyper
time_hyper = time_hyper + t0_hyper time_hyper = time_hyper + t0_hyper
# =============================== # ===============================
# Settlement prediction (Asaoka) # Settlement prediction (Asaoka)
# =============================== # ===============================
# 성토 마지막 데이터 추출
tm_asaoka = time[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
sm_asaoka = settle[step_start_index[num_steps - 1]:step_end_index[num_steps - 1]]
# 현재 단계 시작 부터 끝까지 시간 데이터 추출
time_asaoka = time[step_start_index[num_steps - 1]:final_index]
# 초기 시점 및 침하량 산정
t0_asaoka = tm_asaoka[0]
s0_asaoka = sm_asaoka[0]
# 초기 시점에 대한 시간 조정
tm_asaoka = tm_asaoka - t0_asaoka
time_asaoka = time_asaoka - t0_asaoka
# 초기 침하량에 대한 침하량 조정
sm_asaoka = sm_asaoka - s0_asaoka
# 등간격 데이터 생성을 위한 Interpolation 함수 설정
inter_fn = interp1d(tm_asaoka, sm_asaoka, kind='linear')
'''
변경사항
kind='cubic' --> kind='linear'
드물게 동일 시점에 침하 데이터가 다수 존재할 경우, 에러가 나서 수정함
'''
# 데이터 구축 간격 및 그에 해당하는 데이터 포인트 개수 설정
num_data = int(tm_asaoka[-1] / asaoka_interval)
# 등간격 시간 및 침하량 데이터 설정
tm_asaoka_inter = np.linspace(0, tm_asaoka[-1], num=num_data, endpoint=True)
sm_asaoka_inter = inter_fn(tm_asaoka_inter)
# 이전 이후 등간격 침하량 배열 구축
sm_asaoka_before = sm_asaoka_inter[0:-2]
sm_asaoka_after = sm_asaoka_inter[1:-1]
# Least square 변수 초기화
x0 = np.ones(2)
# Least square 분석을 통한 침하 곡선 계수 결정
res_lsq_asaoka = least_squares(fun_asaoka, x0, args=(sm_asaoka_before, sm_asaoka_after))
# 기존 쌍곡선 법 계수 저장 및 출력
x_asaoka = res_lsq_asaoka.x
# 현재 단계 예측 침하량 산정 (침하 예측 끝까지)
sp_asaoka = generate_data_asaoka(x_asaoka, time_asaoka, asaoka_interval)
# 예측 침하량 산정
sp_asaoka = sp_asaoka + s0_asaoka
time_asaoka = time_asaoka + t0_asaoka
return [time_hyper, sp_hyper_original,
time_hyper, sp_hyper_nonlinear,
time_hyper, sp_hyper_weight_nonlinear,
time_asaoka, sp_asaoka,
time[step_start_index[0]:], sp_step[step_start_index[0]:]]
'''
변경사항
# ========== 필요없는 post-processing 코드를 에러 방지 차원에서 모두 삭제
# 에러 산정 '''
# ==========
# RMSE 계산 데이터 구간 설정 (계측)
sm_rmse = settle[final_step_predict_end_index:final_step_monitor_end_index]
# RMSE 계산 데이터 구간 설정 (단계)
sp_step_rmse = sp_step[final_step_predict_end_index:final_step_monitor_end_index]
# RMSE 계산 데이터 구간 설정 (쌍곡선)
sp_hyper_nonlinear_rmse = sp_hyper_nonlinear[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
sp_hyper_original_rmse = sp_hyper_original[final_step_predict_end_index - step_start_index[num_steps - 1]:
final_step_predict_end_index - step_start_index[num_steps - 1] +
final_step_monitor_end_index - final_step_predict_end_index]
# RMSE 산정 (단계, 비선형 쌍곡선, 기존 쌍곡선)
rmse_step = fun_rmse(sm_rmse, sp_step_rmse)
rmse_hyper_nonlinear = fun_rmse(sm_rmse, sp_hyper_nonlinear_rmse)
rmse_hyper_original = fun_rmse(sm_rmse, sp_hyper_original_rmse)
# RMSE 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선)
if print_values:
print("RMSE (Nonlinear Hyper + Step): %0.3f" % rmse_step)
print("RMSE (Nonlinear Hyperbolic): %0.3f" % rmse_hyper_nonlinear)
print("RMSE (Original Hyperbolic): %0.3f" % rmse_hyper_original)
# (최종 계측 침하량 - 예측 침하량) 계산
final_error_step = np.abs(settle[-1] - sp_step_rmse[-1])
final_error_hyper_nonlinear = np.abs(settle[-1] - sp_hyper_nonlinear_rmse[-1])
final_error_hyper_original = np.abs(settle[-1] - sp_hyper_original_rmse[-1])
# (최종 계측 침하량 - 예측 침하량) 출력 (단계, 비선형 쌍곡선, 기존 쌍곡선)
if print_values:
print("Error in Final Settlement (Nonlinear Hyper + Step): %0.3f" % final_error_step)
print("Error in Final Settlement (Nonlinear Hyperbolic): %0.3f" % final_error_hyper_nonlinear)
print("Error in Final Settlement (Original Hyperbolic): %0.3f" % final_error_hyper_original)
# =====================
# Post-Processing
# =====================
# 그래프 크기, 서브 그래프 개수 및 비율 설정
fig, axes = plt.subplots(2, 1, figsize=(12, 9), gridspec_kw={'height_ratios': [1, 3]})
# 성토고 그래프 표시
axes[0].plot(time, surcharge, color='black', label='surcharge height')
# 성토고 그래프 설정
axes[0].set_ylabel("Surcharge height (m)", fontsize=15)
axes[0].set_xlim(left=0)
axes[0].grid(color="gray", alpha=.5, linestyle='--')
axes[0].tick_params(direction='in')
# 계측 및 예측 침하량 표시
axes[1].scatter(time[0:settle.size], -settle, s=50,
facecolors='white', edgecolors='black', label='measured data')
axes[1].plot(time[step_start_index[0]:], -sp_step[step_start_index[0]:],
linestyle='-', color='blue', label='Nonlinear + Step Loading')
axes[1].plot(time_hyper, -sp_hyper_nonlinear,
linestyle='--', color='green', label='Nonlinear Hyperbolic')
axes[1].plot(time_hyper, -sp_hyper_original,
linestyle='--', color='red', label='Original Hyperbolic')
# 침하량 그래프 설정
axes[1].set_xlabel("Time (day)", fontsize=15)
axes[1].set_ylabel("Settlement (cm)", fontsize=15)
axes[1].set_ylim(top=0)
axes[1].set_ylim(bottom=-1.5 * settle.max())
axes[1].set_xlim(left=0)
axes[1].grid(color="gray", alpha=.5, linestyle='--')
axes[1].tick_params(direction='in')
# 범례 표시
axes[1].legend(loc=1, ncol=2, frameon=True, fontsize=12)
# 예측 데이터 사용 범위 음영 처리 - 단계성토
plt.axvspan(time[step_start_index[0]], final_step_predict_end_date,
alpha=0.1, color='grey', hatch='//')
# 예측 데이터 사용 범위 음영 처리 - 기존 및 비선형 쌍곡선
plt.axvspan(final_step_start_date, final_step_predict_end_date,
alpha=0.1, color='grey', hatch='\\')
# 예측 데이터 사용 범위 표시 화살표 세로 위치 설정
arrow1_y_loc = 1.3 * min(-settle)
arrow2_y_loc = 1.4 * min(-settle)
# 화살표 크기 설정
arrow_head_width = 0.03 * max(settle)
arrow_head_length = 0.01 * max(time)
# 예측 데이터 사용 범위 화살표 처리 - 단계성토
axes[1].arrow(time[step_start_index[0]], arrow1_y_loc,
final_step_predict_end_date - time[step_start_index[0]], 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_predict_end_date, arrow1_y_loc,
time[step_start_index[0]] - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# 예측 데이터 사용 범위 화살표 처리 - 기존 및 비선형 쌍곡선
axes[1].arrow(final_step_start_date, arrow2_y_loc,
final_step_predict_end_date - final_step_start_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_predict_end_date, arrow2_y_loc,
final_step_start_date - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# Annotation 표시용 공간 설정
space = max(time) * 0.01
# 예측 데이터 사용 범위 범례 표시 - 단계성토
plt.annotate('Data Range Used (Nonlinear + Step Loading)', xy=(final_step_predict_end_date, arrow1_y_loc),
xytext=(final_step_predict_end_date + space, arrow1_y_loc),
horizontalalignment='left', verticalalignment='center')
# 예측 데이터 사용 범위 범례 표시 - 기존 및 비선형 쌍곡선
plt.annotate('Data Range Used (Nonlinear and Original Hyperbolic)', xy=(final_step_predict_end_date, arrow1_y_loc),
xytext=(final_step_predict_end_date + space, arrow2_y_loc),
horizontalalignment='left', verticalalignment='center')
# RMSE 산정 범위 표시 화살표 세로 위치 설정
arrow3_y_loc = 0.55 * min(-settle)
# RMSE 산정 범위 화살표 표시
axes[1].arrow(final_step_predict_end_date, arrow3_y_loc,
final_step_end_date - final_step_predict_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
axes[1].arrow(final_step_end_date, arrow3_y_loc,
final_step_predict_end_date - final_step_end_date, 0,
head_width=arrow_head_width, head_length=arrow_head_length,
color='black', length_includes_head='True')
# RMSE 산정 범위 세로선 설정
axes[1].axvline(x=final_step_end_date, color='silver', linestyle=':')
# RMSE 산정 범위 범례 표시
plt.annotate('RMSE Estimation Section', xy=(final_step_end_date, arrow3_y_loc),
xytext=(final_step_end_date + space, arrow3_y_loc),
horizontalalignment='left', verticalalignment='center')
# RMSE 출력
mybox = {'facecolor': 'white', 'edgecolor': 'black', 'boxstyle': 'round', 'alpha': 0.2}
plt.text(max(time), 0.25 * min(-settle),
"Root Mean Squared Error"
+ "\n" + "Nonlinear + Step Loading: %0.3f" % rmse_step
+ "\n" + "Nonlinear Hyperbolic: %0.3f" % rmse_hyper_nonlinear
+ "\n" + "Original Hyperbolic: %0.3f" % rmse_hyper_original,
color='r', horizontalalignment='right',
verticalalignment='top', fontsize='12', bbox=mybox)
# (최종 계측 침하량 - 예측값) 출력
plt.text(max(time), 0.65 * min(-settle),
"Error in Final Monitored Settlement"
+ "\n" + "Nonlinear + Step Loading: %0.3f" % final_error_step
+ "\n" + "Nonlinear Hyperbolic: %0.3f" % final_error_hyper_nonlinear
+ "\n" + "Original Hyperbolic: %0.3f" % final_error_hyper_original,
color='r', horizontalalignment='right',
verticalalignment='top', fontsize='12', bbox=mybox)
# 파일 이름만 추출
filename = os.path.basename(input_file)
# 그래프 제목 표시
plt.title(filename + ": up to %i%% data used in the final step" % final_step_predict_percent)
# 그래프 저장 (SVG 및 PNG)
# plt.savefig(output_dir + '/' + filename +' %i percent (SVG).svg' %final_step_predict_percent, bbox_inches='tight')
plt.savefig(output_dir + '/' + filename + ' %i percent (PNG).png' % final_step_predict_percent, bbox_inches='tight')
# 그래프 출력
if plot_show:
plt.show()
# 그래프 닫기 (메모리 소모 방지)
plt.close()
# 예측 완료 표시
print("Settlement prediction is done for " + filename +
" with " + str(final_step_predict_percent) + "% data usage")
# 단계 성토 고려 여부 표시
is_multi_step = True
if len(step_start_index) == 1:
is_multi_step = False
# 반환
return [rmse_hyper_original, rmse_hyper_nonlinear, rmse_step,
final_error_hyper_original, final_error_hyper_nonlinear,
final_error_step, is_multi_step]
#run_settle_prediction('data_1/1_SP-16.csv', 'output',
# 80, 100, True, True)