import settle_prediction_steps_main import pandas as pd import os input_dir = 'data' output_dir = 'output' input_files = [] df = pd.DataFrame(columns=['File', 'Data_usage', 'RMSE_hyper_original', 'RMSE_hyper_nonlinear', 'RMSE_step', 'Final_error_hyper_original', 'Final_error_hyper_nonlinear', 'Final_error_step']) for (root, directories, files) in os.walk(input_dir): for file in files: file_path = os.path.join(root, file) input_files.append(file_path) for input_file in input_files: for i in range(20, 100, 20): ERROR = settle_prediction_steps.run_settle_prediction(input_file, output_dir, i, 100, False, False) df.loc[len(df.index)] = [input_file, i, ERROR[0], ERROR[1], ERROR[2], ERROR[3], ERROR[4], ERROR[5]] df.to_csv('Error.csv')