import settle_prediction_steps_main import pandas as pd import os input_dir = 'data_1' output_dir = 'output_1' input_files = [] df_overall = pd.DataFrame(columns=['File', 'Data_usage', 'RMSE_hyper_original', 'RMSE_hyper_nonlinear', 'Final_error_hyper_original', 'Final_error_hyper_nonlinear']) df_multi_step = pd.DataFrame(columns=['File', 'Data_usage', 'RMSE_hyper_original', 'RMSE_hyper_nonlinear', 'RMSE_step', 'Final_error_hyper_original', 'Final_error_hyper_nonlinear', 'Final_error_step']) for (root, directories, files) in os.walk(input_dir): for file in files: file_path = os.path.join(root, file) input_files.append(file_path) for input_file in input_files: for i in range(20, 100, 10): RETURN_VALUES = settle_prediction_steps_main.\ run_settle_prediction(input_file, output_dir, i, 100, False, False) df_overall.loc[len(df_overall.index)] = [input_file, i, RETURN_VALUES[0], RETURN_VALUES[1], RETURN_VALUES[3], RETURN_VALUES[4]] if RETURN_VALUES[6]: df_multi_step.loc[len(df_overall.index)] = [input_file, i, RETURN_VALUES[0], RETURN_VALUES[1], RETURN_VALUES[2], RETURN_VALUES[3], RETURN_VALUES[4], RETURN_VALUES[5]] # 에러 파일 출력 df_overall.to_csv('Error_overall.csv') df_multi_step.to_csv('Error_multi_step.csv')