29 lines
1.0 KiB
Python
29 lines
1.0 KiB
Python
import settle_prediction_steps_main
|
|
import pandas as pd
|
|
import os
|
|
|
|
input_dir = 'data'
|
|
output_dir = 'output'
|
|
input_files = []
|
|
|
|
df = pd.DataFrame(columns=['File', 'Data_usage',
|
|
'RMSE_hyper_original',
|
|
'RMSE_hyper_nonlinear',
|
|
'RMSE_step',
|
|
'Final_error_hyper_original',
|
|
'Final_error_hyper_nonlinear',
|
|
'Final_error_step'])
|
|
|
|
for (root, directories, files) in os.walk(input_dir):
|
|
for file in files:
|
|
file_path = os.path.join(root, file)
|
|
input_files.append(file_path)
|
|
|
|
for input_file in input_files:
|
|
for i in range(20, 100, 20):
|
|
ERROR = settle_prediction_steps_main.run_settle_prediction(input_file,
|
|
output_dir, i, 100, False, False)
|
|
df.loc[len(df.index)] = [input_file, i, ERROR[0], ERROR[1], ERROR[2],
|
|
ERROR[3], ERROR[4], ERROR[5]]
|
|
|
|
df.to_csv('Error.csv') |