193 lines
7.0 KiB
Python
193 lines
7.0 KiB
Python
"""
|
|
Title: Controller
|
|
Developer:
|
|
Sang Inn Woo, Ph.D. @ Incheon National University
|
|
Starting Date: 2022-11-10
|
|
"""
|
|
import psycopg2 as pg2
|
|
import sys
|
|
import numpy as np
|
|
import settle_prediction_steps_main
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
'''
|
|
apptb_surset01
|
|
cons_code: names of monitoring points
|
|
|
|
apptb_surset02
|
|
cons_code: names of monitoring points
|
|
amount_cum_sub: accumulated settlement
|
|
fill_height: height of surcharge fill
|
|
nod: number of date
|
|
'''
|
|
|
|
def settlement_prediction(point_name):
|
|
|
|
# connect the database
|
|
#connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432") # local
|
|
connection = pg2.connect("host=192.168.0.13 dbname=sgis user=sgis password=sgis port=5432") # ICTWay internal
|
|
|
|
# set cursor
|
|
cursor = connection.cursor()
|
|
|
|
# select monitoring data for the monitoring point
|
|
postgres_select_query = """SELECT * FROM apptb_surset02 WHERE cons_code='""" \
|
|
+ point_name + """' ORDER BY nod ASC"""
|
|
cursor.execute(postgres_select_query)
|
|
monitoring_record = cursor.fetchall()
|
|
|
|
# initialize time, surcharge, and settlement lists
|
|
time = []
|
|
surcharge = []
|
|
settlement = []
|
|
|
|
# fill lists
|
|
for row in monitoring_record:
|
|
settlement.append(float(row[5]))
|
|
surcharge.append(float(row[7]))
|
|
time.append(float(row[1]))
|
|
|
|
# convert lists to np arrays
|
|
settlement = np.array(settlement)
|
|
surcharge = np.array(surcharge)
|
|
time = np.array(time)
|
|
|
|
# run the settlement prediction and get results
|
|
results = settle_prediction_steps_main.run_settle_prediction(point_name=point_name, np_time=time,
|
|
np_surcharge=surcharge, np_settlement=settlement,
|
|
final_step_predict_percent=90,
|
|
additional_predict_percent=300, plot_show=False,
|
|
print_values=False, run_original_hyperbolic=True,
|
|
run_nonlinear_hyperbolic=True,
|
|
run_weighted_nonlinear_hyperbolic=True,
|
|
run_asaoka=True, run_step_prediction=True,
|
|
asaoka_interval=3)
|
|
|
|
# if there are prediction data for the given data point, delete it first
|
|
postgres_delete_query = """DELETE FROM apptb_pred02 WHERE cons_code='""" + point_name + """'"""
|
|
cursor.execute(postgres_delete_query)
|
|
connection.commit()
|
|
|
|
# prediction method code
|
|
# 0: original hyperbolic method
|
|
# 1: nonlinear hyperbolic method
|
|
# 2: weighted nonlinear hyperbolic method
|
|
# 3: Asaoka method
|
|
# 4: Step loading
|
|
# 5: temp
|
|
|
|
# insert predicted settlement into database
|
|
for i in range(5):
|
|
|
|
# get time and settlement arrays
|
|
time = results[2 * i]
|
|
predicted_settlement = results[2 * i + 1]
|
|
|
|
# for each prediction time
|
|
for j in range(len(time)):
|
|
|
|
# construct insert query
|
|
postgres_insert_query \
|
|
= """INSERT INTO apptb_pred02 """ \
|
|
+ """(cons_code, prediction_progress_days, predicted_settlement, prediction_method) """ \
|
|
+ """VALUES (%s, %s, %s, %s)"""
|
|
|
|
# set data to insert
|
|
record_to_insert = (point_name, time[j], predicted_settlement[j], i)
|
|
|
|
# execute the insert query
|
|
cursor.execute(postgres_insert_query, record_to_insert)
|
|
|
|
# commit changes
|
|
connection.commit()
|
|
|
|
|
|
def read_database_and_plot(point_name):
|
|
|
|
# connect the database
|
|
connection = pg2.connect("host=localhost dbname=postgres user=postgres password=lab36981 port=5432")
|
|
|
|
# set cursor
|
|
cursor = connection.cursor()
|
|
|
|
# select monitoring data for the monitoring point
|
|
postgres_select_query = """SELECT * FROM apptb_surset02 WHERE cons_code='""" \
|
|
+ point_name + """' ORDER BY nod ASC"""
|
|
cursor.execute(postgres_select_query)
|
|
monitoring_record = cursor.fetchall()
|
|
|
|
# initialize time, surcharge, and settlement lists
|
|
time_monitored = []
|
|
surcharge_monitored = []
|
|
settlement_monitored = []
|
|
|
|
# fill lists
|
|
for row in monitoring_record:
|
|
settlement_monitored.append(float(row[6]))
|
|
surcharge_monitored.append(float(row[8]))
|
|
time_monitored.append(float(row[12]))
|
|
|
|
# convert lists to np arrays
|
|
settlement_monitored = np.array(settlement_monitored)
|
|
surcharge_monitored = np.array(surcharge_monitored)
|
|
time_monitored = np.array(time_monitored)
|
|
|
|
# prediction method code
|
|
# 0: original hyperbolic method
|
|
# 1: nonlinear hyperbolic method
|
|
# 2: weighted nonlinear hyperbolic method
|
|
# 3: Asaoka method
|
|
# 4: Step loading
|
|
# 5: temp
|
|
|
|
# temporarily set the prediction method as 0
|
|
prediction_method = 0
|
|
|
|
# select predicted data for the monitoring point
|
|
postgres_select_query = """SELECT prediction_progress_days, predicted_settlement """ \
|
|
+ """FROM apptb_pred02 WHERE cons_code= '""" + point_name \
|
|
+ """' and prediction_method = """ + str(prediction_method) \
|
|
+ """ ORDER BY prediction_progress_days ASC"""
|
|
cursor.execute(postgres_select_query)
|
|
prediction_record = cursor.fetchall()
|
|
|
|
# initialize time, surcharge, and settlement lists
|
|
time_predicted = []
|
|
settlement_predicted = []
|
|
|
|
# fill lists
|
|
for row in prediction_record:
|
|
time_predicted.append(float(row[0]))
|
|
settlement_predicted.append(float(row[1]))
|
|
|
|
# convert lists to np arrays
|
|
settlement_predicted = np.array(settlement_predicted)
|
|
time_predicted = np.array(time_predicted)
|
|
|
|
# 그래프 크기, 서브 그래프 개수 및 비율 설정
|
|
fig, axes = plt.subplots(2, 1, figsize=(12, 9), gridspec_kw={'height_ratios': [1, 3]})
|
|
|
|
# 성토고 그래프 표시
|
|
axes[0].plot(time_monitored, surcharge_monitored, color='black', label='surcharge height')
|
|
|
|
# 성토고 그래프 설정
|
|
axes[0].set_ylabel("Surcharge height (m)", fontsize=15)
|
|
axes[0].set_xlim(left=0)
|
|
axes[0].grid(color="gray", alpha=.5, linestyle='--')
|
|
axes[0].tick_params(direction='in')
|
|
|
|
# 계측 및 예측 침하량 표시
|
|
axes[1].scatter(time_monitored, -settlement_monitored, s=50,
|
|
facecolors='white', edgecolors='black', label='measured data')
|
|
axes[1].plot(time_predicted, -settlement_predicted,
|
|
linestyle='--', color='red', label='Original Hyperbolic')
|
|
|
|
|
|
# script to call: python3 controller.py [business_code] [cons_code]
|
|
# for example:
|
|
if __name__ == '__main__':
|
|
args = sys.argv[1:]
|
|
point_name = args[0]
|
|
settlement_prediction(point_name=point_name)
|
|
# read_database_and_plot(point_name=point_name) #DB 입력 결과 확인 시에 활성화 / 평소에는 비활성화 |