146 lines
10 KiB
HTML
146 lines
10 KiB
HTML
<?php include('../inc/pageheader_eng.php'); ?>
|
||
<link rel="stylesheet" href="../css/rnd.css">
|
||
<script src="../js/picLoad.js"></script>
|
||
<script src="../js/rnd.js?v=190507"></script>
|
||
<?php include('../inc/menubar_eng.php'); ?>
|
||
<section>
|
||
<h1 class="hidden">Start of Content</h1>
|
||
<article class="subBanner">
|
||
<h2 class="hidden">서브배너</h2>
|
||
|
||
<div class="inner">
|
||
<div class="subBannerInfo">
|
||
<ul>
|
||
<li>REFERENCE</li>
|
||
<li>Provides diverse solutions with Innovative technology for customer satisfaction</li>
|
||
</ul>
|
||
</div><!--end of subBannerInfo-->
|
||
</div><!--end of inner-->
|
||
</article><!--end of subBanner-->
|
||
|
||
<div class="siteIndex">
|
||
<div class="inner">
|
||
REFERENCE 》 Deep Learning-based accident image detection system
|
||
</div>
|
||
</div><!--end of siteIndex-->
|
||
<article class="rndContainer">
|
||
<h2 class="hidden">REFERENCE</h2>
|
||
<p><a href="./RnD_lunar.html">></a></p>
|
||
<div class="rndWrapper">
|
||
|
||
<div class="deepLearning">
|
||
<h2 class="hidden">딥러닝 기반 사고영상 감지 시스템</h2>
|
||
<ul class="clearfix">
|
||
<li class="bigPic1">
|
||
<iframe width="100%" height="100%" src="https://www.youtube.com/embed/8WVW2Di2Vu4" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
|
||
</li>
|
||
<li>
|
||
<dl>
|
||
<dt>Deep Learning-based accident image detection system</dt>
|
||
<dd>
|
||
Deep-learning based accident image detection system detects moving & target objects within
|
||
CCTV surveillance range and automatically recognize and alert emergency situation such as
|
||
accidents, reverse driving and fire specified in the management guideline. Compared to computer
|
||
vision-based video analysis techniques, this AI based system is less influenced by weather or place and detects accidents with higher accuracy.
|
||
</dd>
|
||
<dd>
|
||
<ul class="clearfix">
|
||
<li><img src="../images/video_img_01.png" alt="첫 비디오"></li>
|
||
<li><img src="../images/video_img_02.png" alt="두번째 비디오"></li>
|
||
<li><img src="../images/video_img_04.png" alt="세번째 비디오"></li>
|
||
<!--<li><video src="./avi/시퀀스_01_33.mp4" type="video/mp4" controls></li>-->
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</li>
|
||
</ul>
|
||
|
||
<div class="rndInfo">
|
||
<div class="innerScroll">
|
||
<ul class="techIntroduce">
|
||
<li class="techIntroduceTitle">1) Technology Introduction : Deep Learning-based accident image detection system</li>
|
||
<li>
|
||
Object Detection is a research field that analyzes video information by computer instead of a
|
||
person. Object detection technology is used variously in our daily life including pedestrian
|
||
detection, vehicle and road sign recognition by analyzing CCTV video. Especially, in the field of
|
||
traffic flow monitoring, the nationwide road network using CCTV is constantly monitored. In some
|
||
major section, an accident recognition system is in operation to automatically detect and inform
|
||
unexpected situations such as traffic jams, collision and falling objects and so forth. Typical
|
||
accident detection systems are equipped with algorithms based on traditional vision technology,
|
||
but it is highly sensitive to changes in surrounding environment such as luminance and weather,
|
||
resulting in pre-detection and detection errors. To solve this problem, DBNtech developed an
|
||
accident detection system that can detect objects in video like humans in various environments
|
||
using Deep Learning-based object detection technology. In collaboration with KICT(KOREA
|
||
INSTITUTE of CIVIL ENGINEERING and BUILDING TECHNOLOGY), we have completed an accident
|
||
detection system optimized for various environments and have set demonstrate-installed and delivered the system on since 2019.
|
||
</li>
|
||
</ul><!--end of techIntroduce-->
|
||
<ul class="techIntroduce">
|
||
<li class="techIntroduceTitle">2) Related images</li>
|
||
<li class="techIntroduceImg">
|
||
<span><img src="../images/reference/deep/one.PNG" alt="레티나넷"></span>
|
||
<span><img src="../images/reference/deep/two.PNG" alt="SSD and YOLO"></span>
|
||
</li>
|
||
</ul><!--end of techIntroduce-->
|
||
<ul class="techIntroduce">
|
||
<li class="techIntroduceTitle">3) Application of Deep Learning-based Object detection</li>
|
||
<li class="techIntroduceHandle clearfix">
|
||
<dl>
|
||
<dt>A. Detection of unusual event (accident) through CCTV image analysis</dt>
|
||
<dd><img src="../images/reference/deep/1.PNG" alt=""></dd>
|
||
<dd>
|
||
1. Detection of stop(or collision) and reverse driving<br />
|
||
2. Pedestrian detection<br />
|
||
3. Fire and smoke detection<br />
|
||
</dd>
|
||
</dl>
|
||
<dl>
|
||
<dt>B. Character detection in images</dt>
|
||
<dd><img src="../images/reference/deep/2.PNG" alt=""></dd>
|
||
<dd>
|
||
1. Card number recognition<br />
|
||
2. Vehicle’s license plate recognition<br />
|
||
</dd>
|
||
</dl>
|
||
<dl>
|
||
<dt>C. Object recognition in space</dt>
|
||
<dd><img src="../images/reference/deep/3.PNG" alt=""></dd>
|
||
<dd>
|
||
1. Product recognition for unattended store payment system<br />
|
||
2. Automatic inventory check-up in refrigerator<br />
|
||
</dd>
|
||
</dl>
|
||
<dl>
|
||
<dt>D. Behavioral pattern analysis</dt>
|
||
<dd><img src="../images/reference/deep/4.PNG" alt=""></dd>
|
||
<dd>
|
||
1. Human motion tracking<br />
|
||
2. Calculation of human’s action radius<br />
|
||
</dd>
|
||
</dl>
|
||
</li>
|
||
</ul><!--end of techIntroduce-->
|
||
</div><!--end of innerScroll-->
|
||
|
||
</div><!--end of rndInfo-->
|
||
|
||
</div><!--end of deepLearning-->
|
||
|
||
</div><!--end of rndWrapper-->
|
||
|
||
</article><!--end of rndContainer-->
|
||
|
||
<div class="fixMenu">
|
||
<p class="btn_fix"></p>
|
||
<ul>
|
||
<li><a href="#" alt="딥러닝 기반 사고영상 감지 시스템">Deep Learning-based accident image detection system</a></li>
|
||
<li><a href="#" alt="월면 크레이터 자동 인식 시스템">Automatic detection system of craters on the Lunar surface</a></li>
|
||
<li><a href="#" alt="시추정보 기반의 액상화 모델링 및 3차원 분석 모듈">liquefaction modeling and 3D analysis module based on Drilling information </a></li>
|
||
<li><a href="#" alt="도로표지관리/안내시스템">Road sign management/guide system</a></li>
|
||
</ul>
|
||
|
||
</div><!--end of fixMenu-->
|
||
</section><!--end of section, mainPage-->
|
||
<?php include('../inc/footer_eng.php'); ?>
|
||
</body>
|
||
</html> |